不确定性的困惑与NP理论分享 http://blog.sciencenet.cn/u/liuyu2205 平常心是道

博文

为什么还要讲“没用的NDTM”?(1)

已有 4106 次阅读 2015-5-2 14:58 |个人分类:不确定性问题和算法讨论|系统分类:科研笔记| NDTM, versus, Cook定理

最近我与一个工作在NP问题实际求解前沿的同事对话:

同事:我认为,如果取消了“不确定性图灵机(NonDeterministic Turing Machine NDTM)”这个概念,把NP定义成“确定性图灵机(Deterministic Turing Machine DTM)”在多项式时间内可验证的问题类,不会影响NP问题的实际求解,对NP完备理论也不会产生影响。

柳渝:此议题涉及到二个层次,NP问题的实际求解和NP问题的理论研究。若取消NDTM,就NP理论而言,人们自然会问诸如此类问题:

-为什么所有关于NP完备理论的文献和书籍,都要花重要的篇幅讲NDTM?

-若NDTM无用,为什么仍然要将此无用的概念灌输给学子们,混淆他们的认知,让他们越学越晕?

-NP完备理论的核心是Cook定理(注),而Cook定理的陈述和证明都是建立在NDTM基础之上的,如果取消了NDTM,如何阐述Cook定理?如何理解NP完备理论?

注:The original statement of Cook’s theorem was presented in Cook’s paper entitled “The complexity of theorem proving procedures” as:

Theorem 1 If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to {DNF tautologies}.

The main idea of the proof of Theorem 1 was described:

-Suppose a nondeterministic Turing machine M accepts a set S of strings within time Q(n), where Q(n) is a polynomial. Given an input w for M, we will construct a propositional formula A(w) in conjunctive normal form (CNF) such that A(w) is satisfiable iff M accepts w. Thus ¬A(w) is easily put in disjunctive normal form (using De Morgans laws), and ¬A(w) is a tautology if and only if w ̸∈ S. Since the whole construction can be carried out in time bounded by a polynomial in | w | (the length of w), the theorem will be proved.  




https://blog.sciencenet.cn/blog-2322490-886864.html

上一篇:“问题”的系统观(整体观)
下一篇:为什么还要讲“没用的NDTM”?(2)
收藏 IP: 82.246.87.*| 热度|

4 徐晓 杨正瓴 姜咏江 icgwang

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 13:06

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部