|||
最近我与一个工作在NP问题实际求解前沿的同事对话:
同事:我认为,如果取消了“不确定性图灵机(NonDeterministic Turing Machine NDTM)”这个概念,把NP定义成“确定性图灵机(Deterministic Turing Machine DTM)”在多项式时间内可验证的问题类,不会影响NP问题的实际求解,对NP完备理论也不会产生影响。
柳渝:此议题涉及到二个层次,NP问题的实际求解和NP问题的理论研究。若取消NDTM,就NP理论而言,人们自然会问诸如此类问题:
-为什么所有关于NP完备理论的文献和书籍,都要花重要的篇幅讲NDTM?
-若NDTM无用,为什么仍然要将此无用的概念灌输给学子们,混淆他们的认知,让他们越学越晕?
-NP完备理论的核心是Cook定理(注),而Cook定理的陈述和证明都是建立在NDTM基础之上的,如果取消了NDTM,如何阐述Cook定理?如何理解NP完备理论?
注:The original statement of Cook’s theorem was presented in Cook’s paper entitled “The complexity of theorem proving procedures” as:
-Theorem 1 If a set S of strings is accepted by some nondeterministic Turing machine within polynomial time, then S is P-reducible to {DNF tautologies}.
The main idea of the proof of Theorem 1 was described:
-Suppose a nondeterministic Turing machine M accepts a set S of strings within time Q(n), where Q(n) is a polynomial. Given an input w for M, we will construct a propositional formula A(w) in conjunctive normal form (CNF) such that A(w) is satisfiable iff M accepts w. Thus ¬A(w) is easily put in disjunctive normal form (using De Morgans laws), and ¬A(w) is a tautology if and only if w ̸∈ S. Since the whole construction can be carried out in time bounded by a polynomial in | w | (the length of w), the theorem will be proved.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-23 13:06
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社