||
2018年10月26日,美国《科学》(Science)杂志以背靠背的形式刊登两篇长文,报道了美国麻省理工学院、加拿大英属哥伦比亚大学和美国华盛顿大学等研究人员在二维拓扑绝缘体——单层二碲化钨(WTe2)中通过门电压调控载流子浓度获得超导电性,这是首次在拓扑非平庸体系实现绝缘体-超导量子态的连续调控,为未来拓扑量子器件的研发开辟了一条更为简单方便的道路。论文通讯作者之一,来自美国麻省理工学院的Pablo Jarillo-Herrero,正是今年三月在Nature发表两篇背靠背论文,报道了他们利用门电压调控双层“魔角”石墨烯,成功实现莫特绝缘体和超导电性,相关学术报告曾在2018年美国物理学会三月会议引起巨大轰动。如今,两篇Science背靠背论文再次点燃二维材料超导电性调控的热潮,文章分别题为:“Electrically tunable low-density superconductivity in a monolayer topological insulator(by V. Fatemi et al.)”和“Gate-induced superconductivity in a monolayer topological insulator(by E. Sajadi et al.)”
凝聚态物质中的许多神奇现象来源于材料中电子群体的量子相互作用。在具有周期原子晶格的固体材料中,电子的运动可以被周期化的布洛赫波来描述,电子能级不再是孤立的存在,而是被展宽成一条条“能带”——由一系列特定能量-动量关系组成。在凝聚态物质里,考虑到电子们受到的相互作用,电子也不再是独立的“裸电子”了,而是可以重新定义成一群“穿衣服的粒子”,称之为“准粒子”,这些准粒子的能量-动量分布,决定了材料许多宏观物理特性[1]。
以材料的导电性为例。材料中电子属于费米子,因为泡利不相容原理,无法全部处于低能的量子态,只能从低能带不断往高能带填充。处于最高能带(导带)的电子具有很强的巡游性,数目越多则导电性越好,一般而言金属就是导带半满填充的。许多金属在低温下会成为超导体,其电阻为零,是一种宏观量子效应。本质在于,材料中的电子(费米子)借助相互作用媒介两两配对,形成新的准粒子(玻色子),就不再同一量子态相互排挤,而是共同携手凝聚到低能稳定态——超导态[2]。如果材料中的电子统统拥挤在低能带(价带),而没有参与导电的电子在导带,价带和导带之间还存在难以逾越的鸿沟(能隙),那么就是一个导电性极差的平庸绝缘体。相对而言,还有非平庸的绝缘体,称之为拓扑绝缘体。这类材料除了具有三维不导电的绝缘体态之外,还同时具有二维导电的金属表面态(图1)。也就是说,拓扑绝缘体具有“内心沉闷、表面风骚”的特点,表面电子不受杂质散射,具有低电阻表面态,且内部绝缘体又防止漏电,可实现低功耗。在二维拓扑绝缘体中,表面或边界态的电子自旋将和动量锁定,边界将出现一维自旋螺旋链,进而实现“量子自旋霍尔效应(QSHE)”,即边界存在“自旋流”。更重要的是,这一切神奇的量子现象,都是受到材料能带拓扑性质保护的,这意味着表面导电金属态和边界自旋流都是可以稳定存在[3]。如果能够连续调控非平庸拓扑态到超导态,那么将有可能实现拓扑超导体,借助超导态下的稳定电子配对和量子相干效应,可能出现一种更为神奇的准粒子——马约拉纳零能模,它的反粒子就是它自己。进而,若能操控马约拉纳零能模,就有可能实现拓扑量子计算,把大规模计算的能耗降到极低,速度提升到极快。一句话,拓扑与超导的完美结合,将有可能给人类世界带来颠覆性的量子革命!
然而,理想很丰满,现实却骨感。在寻找拓扑超导体之路上,科学家经过理论和实验的重重挑战,至今没有找到令人满意的答案。从拓扑绝缘体出发,确实能够得到超导,比如化学掺杂、施加外压力、超导邻近效应等,但这些都是不可逆过程或要借助外力,对电子器件来说有不少操作困难[4-6]。在拓扑绝缘体上制备超导薄膜,是目前最有效的实现马约拉纳零能模的方法之一,仍强烈依赖于材料制备和测量的精巧技术。能否找到真正的拓扑超导体?科学家心里一直在打鼓。