|||
http://tech.ifeng.com/discovery/geography/detail_2012_09/29/17998085_0.shtml
现代火山活动有明显致冷的记录。短周期的对应关系是:小冰期对应强火山活动,小气候最适期对应弱火山活动。但是,火山长周期的对应关系却是:火山活动峰值与全球无冰期对应,而谷值与大冰期对应(见图1)[10]。图2、图3 和图4有很好的对应性。Larson给出了1.5亿年以来全球地磁、洋壳产量、古温度、古海平面、黑色页岩的异常变化,与图2、图3 和图4的变化趋势基本一致[11]。20世纪80年代以来第三代全球洋底磁条带图的研究,揭示了地表三大洋底在距今160 Ma(卡洛期末)、139 Ma(凡兰吟期初)和97 Ma(阿尔布期末)前发生过三次几乎同时的重大裂解作用[12]。
图4 北美火山活动曲线[据Engel and Engel, 1964[10]
古地球自转可能存在间隔2亿多年的准周期,图5给出了朔望月天数变化所表示的地球自转速度变化曲线[13]。从图5中可以看出,1.4亿年中生代,地球自转速度处于高峰;2.3亿年前二叠纪,地球自转速度处于低谷。在15~25 Ma期间,地球自转处于增速阶段,目前处于低谷。
在过去4.5亿年中地球旋转速率、地磁轴视极移、洋脊的活动、海平面和气候变化有伴随出现的现象。地球旋转加速时期主要对应了正极性时期,而旋转减慢时期主要对应了负极性时期,前者如志留纪至早泥盆纪和中生代,这阶段由于地球旋转速度加快,使地磁极具正极性、洋脊活动增强、全球性海侵和古气候变暖。自晚泥盆纪至二叠纪和新生代,是地球旋转速度减慢时期,表现为负极性为主、洋脊活动减弱、全球性海退、气候剧烈变化和出现大冰期。这些资料表明,在几亿年时间尺度上,各种地质旋回有一定程度的相关性存在,与地球自转速度变化相对应[14]。
图5 近5亿年来朔望月天数的变化(据任振球, 1990 [13] )
表1 地球自转周期与地质旋回
时间 地球自转 全球气候 生物灭绝事件 热 幔 柱 喷 发 /Ma 形成物 体积/106km3 |
480 高峰 温暖期 北美火山活动高峰 437 低谷 奥陶志留纪大冰期 北美火山活动低谷 370 高峰 泥盆纪温暖期 北美火山活动高峰 280 减慢 石炭二叠纪大冰期 北美火山活动减弱 248 减慢 西伯利亚暗色岩 230 低谷 二叠纪大冰期末 北美火山活动低谷 160 加快 中生代温暖期 三大洋底重大裂解作用 140 加快 中生代温暖期 香港超级火山 139 加快 中生代温暖期 三大洋底重大裂解作用 120~124 高峰 温暖期 不明显 (水下喷发) 翁通爪哇海台 36 北美火山活动高峰 110~115 加快 温暖期 大规模生物灭绝 凯尔盖朗海台 变小 97 加快 中生代温暖期 三大洋底重大裂解作用 65~69 高峰 温暖期 恐龙灭绝,所有物种近 德干暗色岩 变小 一半灭绝 55~59 高峰 温暖期 许多深海有孔虫类和 北大西洋火山 变小 陆生哺乳动物灭绝 边缘 25 低谷 低温 15~18 加快 变暖 大规模物种灭绝 哥伦比亚河溢 1.3 流玄武岩 10~12 高峰 变暖 0~2 低谷 第四纪大冰期 北美火山活动低谷 |
对比图4和图5 ,两种曲线有相同的变化趋势:火山活动高峰对应全球气候变暖和地球自转加快,火山活动低谷对应全球气候变冷和对应地球自转减慢。表1给出了这种地质旋回与地球自转周期的相关关系,热幔柱强烈喷发导致大量生物灭绝[4]。在15~20 Ma前南极的夏季温度要比现在高出大约11℃,最高可以达到大约7℃。这一南极地区的“绿化”过程最高峰大致出现在中新世中期,距今大约16.4~15.7 Ma。可以对比的是,在15~25 Ma期间,地球自转处于增速阶段,火山活动强烈。这种对应并不是个例,叶淑华院士指出,在距今0.65-1.4亿年前的白垩纪,地磁场突然倒转,岩浆活动非常剧烈;大气温度比现在高18℃左右;海平面比现在约高150米;地球的自转变快;古生物大量灭绝;大气中CO2的含量十倍于现在;陨石增多[15]。在此期间,地球自转速度处于峰值。与此相反,437 Ma的奥陶-志留纪大冰期、230 Ma石炭-二叠纪大冰期、2 Ma第四纪大冰期以及25 Ma第三纪变冷期都对应地球自转速度低谷和北美火山活动低谷。
表2 地球自转周期、地质旋回和地磁极性倒转[1, 2, 16, 167]
地质界线 |
新生代/ 现在 |
中生代/ 新生代 |
侏罗纪/ 白垩纪 |
古生代/ 中生代 |
石炭纪/ 二叠纪 |
下古生代/ 上古生代 |
年代/102Ma |
0 |
0.65 |
1.36 |
2.25 |
2.80 |
3.45 |
地壳自转 |
减慢 |
|
加快 |
|
减慢 |
|
火山活动 |
喷发最弱 |
喷发中等 |
喷发最强 |
喷发中等 |
喷发最弱 |
喷发中等 |
海陆变动 |
大陆为主最大海退 |
由主要是海变为大陆 |
最大海侵 |
由主要是大陆变海 |
大陆为主最大海侵 |
由主要是还变到大陆 |
气候变化 |
第四纪大冰期 |
|
温暖期 |
|
石炭二叠纪大冰期 |
|
陆海分布类型 |
大陆集中在北极 |
|
大陆分散在赤道 |
|
大陆集中在南极 |
|
造山作用 生物灭绝 |
第三纪大褶皱 |
|
白垩纪恐龙灭绝 |
|
石炭二叠纪大褶皱 |
|
地磁极性 |
反向 |
|
正向 |
|
反向 |
|
根据地质和气象等综合数据,表2给出地球自转周期、地质旋回、气候变化和地磁变化的对应规律,与图4和图5地球自转变化曲线和火山活动变化曲线相对应。特别值得指出的是,地壳相对地核自转减慢对应地磁反向,地壳相对地核自转加快对应地磁正向,这一现象的发现为地球各圈层差异旋转影响地磁反向提供了证据[2]。
巨大火成岩省来自核幔边界热幔柱的猛烈喷发(图3)[8, 11]。核幔边界热幔柱喷发的能量又来自何处?理论模型的研究表明,重力分异不仅把一个均匀密度的地球变为密度分层的地球,而且把一个整体自转的地球变为分层差异旋转的地球。在重物质向地心集中的同时,自转动能也向地核集中,使地核自转变快,使地壳和地幔自转变慢,形成地球内外圈层的差异旋转,核幔边界成为圈层角动量交换的边界[5, 18-20]。本来重物质向地心集中,地球的转动惯量变小,自转速度应该加快,圈层差异旋转掩盖了这一真相。当圈层角动量交换将部分动能变为热能积累在核幔边界,使外核成为液态物质的同时,地壳、地幔和地核以统一的速度自转,地壳和地幔自转速度变快,地核自转速度变慢,整个地球的自转速度要大于重力分异前的自转速度。这是核幔边界的热幔柱大规模喷发与地球自转加速相对应的原因。太阳风和太阳辐射量的变化可以压缩地球磁场,增强或减弱核幔角动量交换,对核幔边界的热幔柱活动有控制作用(图6)。
两极临近结冰的海水因为密度最大而沉入两极海底,自转离心力将较重的海水推向赤道海底,形成全球巨厚的海底冷水层。由于太阳辐射不能进入这个领域,“冷”被安全地封存在海底。赤道海水表层热水在上、冷水在下,垂直方向只有热传导、没有热对流,这个过程被称为“海底藏冷效应”[21]。由于内核相对地壳地幔的差异旋转,核幔角动量交换使部分旋转动能转变为热能积累在核幔边界(赤道处的核幔速度差最大,积累的热能最多,图1中的巨大火成岩省主要集中在赤道附近)。超级热幔柱在海底赤道区喷发,加热了底层海水,并引发赤道和两极之间的海洋整体热循环,降低了赤道和两极大气的温差,使两极的海温和气温逐渐上升到冰点以上,形成中生代全球无冰温暖气候,这一过程称之为海洋锅炉效应[4]。
图6 太阳辐射变化、核幔角动量交换和气候变化的关系 [8, 11]
http://blog.sciencenet.cn/blog-2277-614565.html
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-22 20:22
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社