全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

大气层电流和磁场:太阳风压缩大气层形成绕地球旋转的大气尾

已有 1290 次阅读 2024-4-4 10:03 |个人分类:全球变化|系统分类:论文交流

大气层电流和磁场:太阳风压缩大气层形成绕地球旋转的大气尾

                                                                杨学祥,杨冬红

     关键提示

     太阳风压缩大气层和地磁层,形成环绕地球旋转的大气尾、内磁尾和外磁尾。大气尾、内磁尾和外磁尾绕地球旋转是问题的关键。

      太阳风压缩大气层形成臭氧洞和气尾

       根据地球公转轨道,秋分(922-24日)到冬至(1221-23日),南极的极昼使太阳辐射对南极最强,产生南极的臭氧洞(或臭氧稀薄区);春分(320-22日)到夏至(621-22日,北极的极昼使太阳对北极辐射最强,易产生北极的臭氧洞(或臭氧稀薄区)。由于地球近日点在13日或4日,远日点在72日或3日,这是南极比北极更容易出现臭氧洞的原因,也是臭氧洞季节性变化的原因。

臭氧洞应该周期性地在南北两极轮流出现特别是,由于没有达到臭氧洞低浓度的标准,臭氧洞没有出现,但是北极臭氧稀薄区在3月和南极臭氧稀薄区在9月也会周期存在,从而形成每年3月和9月两极地区的臭氧稀薄区变化周期。这是冠状病毒季节性爆发的原因。

每年3月和9月的臭氧洞漏能效应,相当于大自然对地球的两次大规模消杀病毒过程,对冠状病毒的抑制或杀灭作用不可忽视。

      事实上,地球南北极都出现过臭氧洞,证实了我们的理论。彗星的轨道是一个偏心率很大的椭圆,受太阳风压力作用,在近日点彗尾最长,在远日点彗尾最短。同样,地球轨道也是一个椭圆,在近日点气尾最长,在远日点气尾最短。这是南极臭氧洞比北极臭氧洞面积大,存在时间长的原因(见图1-3)。

彗尾1.jpeg

图1   彗星的彗尾(网上资料)

https://blog.sciencenet.cn/blog-2277-1403485.html

 

2  太阳风压缩地磁层形成地磁内磁尾和外磁尾(杨学祥等,1997)

        太阳风不仅使地球产生磁尾,而且使地球产生气尾和臭氧洞

       臭氧洞的存在和扩大与地球公转轨道有关  

南极臭氧洞(Antarctic ozone hole)是指南极上空出现的臭氧层空洞,由英国南极考察科学家在1985年首次报道发现。这里所指的空洞,并不是说整个臭氧层消失了,而是指大气中的臭氧含量减小到一定程度。

每年的8月下旬至9月下旬,在20千米高度的南极大陆上空,臭氧总量开始减少,10月初出现最大空洞,面积达2000多万平方千米,覆盖整个南极大陆及南美的南端,11月份臭氧才重新增加,空洞消失。

1999年我们就撰文就指出,造成南极上空臭氧空洞的罪魁祸首是太阳风,而不是通常所认为人类使用的氟利昂。这一观点发表在今年5月份出版的《科学美国人》杂志中文版上。杨教授在论文中指出,有3个因素结合起来使南极臭氧层出现空洞:太阳风的压力使地球南极上空大气层变薄;处于开裂期的地球南半球由于火山爆发释放出大量有害气体破坏臭氧层;太阳高能粒子进入地球大气层后消耗了两极臭氧。

      根据地球公转轨道,秋分(922-24日)到冬至(1221-23日),南极的极昼使太阳辐射对南极最强,产生南极的臭氧洞(或臭氧稀薄区);春分(320-22日)到夏至(621-22日,北极的极昼使太阳对北极辐射最强,易产生北极的臭氧洞(或臭氧稀薄区)。其中,2010年冰岛火山的异常喷发规模最大,火山灰集中在北极,降温和破坏臭氧的作用值得关注。由于地球近日点在13日或4日,远日点在72日或3日,这是南极比北极更容易出现臭氧洞的原因,也是臭氧洞季节性变化的原因。臭氧洞应该周期性地在南北两极轮流出现

     事实上,北半球也可能出现臭氧洞事件,历史上,北极在1997年、2011年和2020年都出现了较大规模的臭氧洞。

     地球南北极都出现过臭氧洞,证实了我们的理论。彗星的轨道是一个偏心率很大的椭圆,受太阳风压力作用,在近日点彗尾最长,在远日点彗尾最短。同样,地球轨道也是一个椭圆,在近日点气尾最长,在远日点气尾最短。这是南极臭氧洞比北极臭氧洞面积大,存在时间长的原因(见图2-3)。 

      两极臭氧洞首先是自然的产物。极夜和极昼的交替,极涡和低温条件,火山灰向极地的集中,臭氧洞在南北两极的轮换,都是自然规律运作的结果,远非人力所能控制。北半球大陆集中,人口稠密,如果《蒙特利尔议定书》的努力只是将臭氧洞从南极迁移到北极,这项成功究竟是福音还是灾难?

       2011年北极臭氧减少的背景是:太阳活动由2009年的谷值向2013年的峰值过渡,太阳高能粒子活动逐渐增强;20111-3月北半球受到低温暴雪的袭击,低温和北极涛动强烈;20103月爆发的冰岛火山喷发,巨量的火山灰不仅降低了气温,而且破坏了臭氧。

       北极臭氧洞在氟利昂停滞消耗臭氧的条件下产生,自然规律再次出人意料地证实了自身的存在,人类的努力如猴子捞月亮,劳而无功,甚至帮了个倒忙。例如,20203月北极出现臭氧洞,20209月南极出现臭氧洞,通过它们进入两极的太阳高能粒子,阻止和减弱了新冠病毒的爆发和发展。

https://blog.sciencenet.cn/blog-2277-1332162.html

太阳风压缩大气层形成臭氧洞和气尾.png  

 太阳风压缩大气层背光流动形成两极地区极昼时臭氧洞(或臭氧稀薄区)和极夜时气尾

      由图2-3可见,太阳风压缩大气层背光流动形成两极地区极昼时臭氧洞(或臭氧稀薄区)和极夜时气尾;太阳风压缩地磁层背光流动形成两极极夜时外磁尾和内磁尾。它们背光旋转,24小时旋转一周。 

      极地涡旋是元凶

      2020年春季北极上空的臭氧洞规模达到100多万平方公里,成为史上最大的北极臭氧洞。这次臭氧洞的产生主要是源自平流层极区异常强大的极涡,极涡隔绝了南北热量和空气交换,在极区低温环境里形成臭氧洞,随着春末极涡的分裂,臭氧洞也随之消失。

https://www.sohu.com/a/394495866_99907401

       2020南极臭氧洞变大:极地涡旋是元凶,恢复之路任重而道远。

       当平流层温度变低时,空洞内的臭氧浓度就会减少,特别是在低于–78°C的温度下形成平流层云时,这些高空云在太阳辐射的情况下有助于增加氟氯烃等化学物质的化学反应,从而导致臭氧消耗,进一步减少臭氧层。最近的极地涡旋使地球大气层保持极冷,从而形成了极地平流层云。在过去的几周中,阳光再次回到南极,该地区的臭氧层持续消耗。

       尽管2020年的臭氧空洞并不是有记录以来的最高值,小于2000年的2990万平方公里,但其意义仍然重大,洞口也是近年来最深的洞之一。研究人员表示,2020年的这一事件是由强烈的极地涡旋驱动的,不会成为永久状态,而2019年创纪录的异常小而短暂的臭氧空洞则是由于特殊的高温气象条件造成的。

https://www.163.com/dy/article/FSHKO7IV0512GVI0.html

 太阳风压缩大气层形成气尾极地涡旋和臭氧洞.png

图4 太阳风压缩大气层背光流动形成两极地区极昼时臭氧洞(或臭氧稀薄区)、极地涡旋和极夜时气尾(杨学祥,杨冬红;2022)

      太阳风压缩大气层背光流动形成臭氧洞,由于科里奥利的作用,背光流动的大气将在极昼区加强极地涡旋,形成阻止含臭氧的大气进入极区的特殊表象。极涡的低压中心进一步加剧臭氧洞的扩大。

 

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1428119

地磁场的起源:大气尾、地球内磁尾和外磁尾中电子绕地旋转

地球存在磁场的原因还不为人所知,普遍认为是由地核内液态铁的流动引起的。最具代表性的假说是发电机理论1945年,美国物理学家埃尔萨塞根据磁流体发电机的原理,认为当液态的外地核在最初的微弱磁场中运动,像磁流体发电机一样产生电流,电流的磁场又使原来的弱磁场增强,这样外地核物质与磁场相互作用,使原来的弱磁场不断加强。由于摩擦生热的消耗,磁场增加到一定程度就稳定下来,形成了现在的地磁场。

还有一种假说认为铁磁质在770℃(居里温度)的高温中磁性会完全消失。在地层深处的高温状态下,铁会达到并超过自身的熔点呈现液态,决不会形成地球磁场。而应用磁现象的电本质来做解释,认为按照物理学研究的结果,高温、高压中的物质,其原子的核外电子会被加速而向外逃逸。所以,地核在6000K的高温和360万个大气压的环境中会有大量的电子逃逸出来,地幔间会形成负电层。按照麦克斯韦的电磁理论:电动生磁,磁动生电。所以,要形成地球南北极式的磁场,必然需要形成旋转的电场,而地球自转必然会造成地幔负电层旋转,即旋转的负电场,磁场由此而生。

这一假说的致命弱点是,地幔间形成负电层相对于地壳和地幔是固定不动的,并没有旋转,因此不能形成地球磁场。

1998年我们发现,太阳风压缩地球磁层产生背光的外磁尾和内磁尾,是环绕地球各圈层旋转的,包括地壳、地幔和固体内核。内磁尾和外磁尾中的带电粒子绕核旋转、绕地壳地幔旋转,形成地磁场。这一发现发表在参考文献的论文和论著中。内磁尾是当时的定义,现在看来,称为“外核尾”比较准确。

在太阳磁场的挤压下,伴随地球自转,外核中的内磁尾环绕内核旋转,内磁尾(外核尾)里的多余电子环绕内核旋转而产生地球磁场。或许与地球外磁层类似,电子携带的负电荷与质子携带的正电荷分布在内磁尾(外核尾)的不同高度。最合理的解释是,内磁尾(外核尾)集中了一种电荷,电子携带的负电荷或质子携带的正电荷,电荷极性的改变导致地磁极性倒转。

https://blog.sciencenet.cn/blog-2277-1327821.html

https://blog.sciencenet.cn/blog-2277-1403485.html

https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1428119

   

相关资料

热层

热层(英文:Thermosphere),亦称热成层、热气层或增温层,是地球大气层的一层。它位于中间层之上及散逸层之下,其顶部离地面约800km。热层的空气受太阳短波辐射而处于高度电离的状态,电离层便存在于在本层之中,而极光也是在热层顶部发生的。

快速导航

    1概述

    编辑

    含义

    中间层顶(约85千米)至250km(在太阳宁静期)或500km左右(太阳活动期)之间的大气层。 热层又称热热层热层(3)成层或暖层,它位于中间层顶以上。从热层底部向上,大气温度迅速增加,达到温度梯度消失时的高度,即为热层顶。

    特点

    热层中,气温随高度的增加而迅速增高。这是由于波长小于0.175μm的太阳紫外辐射都被该层中的大气物质(主要是原子氧)所吸收的缘故。其增温程度与太阳活动有关,当太阳活动加强时,温度随高度增加很快升高,这时500km处的气温可增至2000K;当太阳活动减弱时,温度随高度的增加增温较慢,500km处的温度也只有500K。

    2热层的应用

    编辑

    产生电流和磁场

    热层没有明显的顶部。通常认为在垂直方向上,气温从向上增温至转为等温时,为其上限。在热层中空气处于高度电离状态,其电离的程度是不均匀的。其中最强的有两区,即E层(约位于90—130km)和F层(约位于160—350km)。F层在白天还分为F1和F2两区。据研究高层大气(在60km以上)由于受到强太阳辐射,迫使气体原子电离,产生带电离子和自由电子,使高层大气中能够产生电流和磁场,并可反射无线电波,从这一特征来说,这种高层大气又可称为电离层,正是由于高层大气电离层的存在,人们才可以收听到很远地方的无线电台的广播。

    极光

    在高纬度地区的晴夜,在热层中可以出现彩色的极光。这可能是由于太阳发出的高速带电粒子使高层稀薄的空气分子或原子激发后发出的光。这些高速带电粒子在地球磁场的作用下,向南北两极移动,所以极光常出现在高纬度地区上空。

    3气候特征

    编辑

    温度

    热层顶高度随太阳活动变化很大,通常在300~500千米之间。热层几乎吸收了波长短于1750埃的全部太阳紫外辐射,成为主要热源,热层温度结构主要受太阳活动的支配。

    这一层温度随高度增加而迅速增加,层内温度很高,层顶温度可达1500K,昼夜变化很大,热层下部尚有少量的水分存在,因此偶尔会出现银白并微带青色的夜光云。

    大气密度

    热层存在于离地表85公里以上的高空。在这样的高度,剩余的大气气体会根据分子量而分层。热层的空气极为稀薄,本层质量仅占大气总质量的0.5%。在120公里高度以上的空间,空气密度已小到声波难以传播的程度,在270公里高度上,空气密度约为地面空气的百亿分之一,在300公里的高度上,空气密度只及地面密度的千亿分之一,再向上空气就更稀薄了。

    电离

    热层的大气分子吸收了因太阳的短波辐射及磁场后其电子能量增加,当中一部份进行电离,这些电离过的离子与电子形成了电离层,在热成层的电离层,存在着E层(离地面100-120公里)、F1层(离地面170-230公里)、F2层(离地面200-500公里)(夜间融合为F层,约离地面300-500公里)三层。而因季节变化更会出现突发性E层(Es层,约离地面100公里),电离层可以反射无线电波,因此它又被人类利用进行远距离无线电通信。

    极光现象

    热层在高纬度地区因磁场而被加速的电子会顺势流入,与热层中的大气分子冲突继而受到激发及电离。当那些分子复回原来状态的时候,就会产生发光现象。此称为极光。

    4环境影响

    编辑

    2012年11月一期英国《自然-地学》杂志刊登报告说,在大气层分层中处于上部的热层,其二氧化碳含量近来出现上升趋势。这是科学家首次直接观测到这个层次大气中二氧化碳含量上升,说明人类大量排放二氧化碳的影响已经触及大气外围。

    英国约克大学研究人员和国际同行报告说,他们这次借助卫星观测数据分析出热层中二氧化碳的含量变化。太阳光在热层大气中被吸收,不同气体分子会吸收不同波长的光线,进而可分析出其中二氧化碳分子的含量。结果显示,在101千米的高度,二氧化碳含量在以每十年23.5ppm(1ppm为一百万分之一)的速率增长。这是首次直接观测到热层大气中的二氧化碳含量变化情况。近年来科学界在测量不同高度大气中二氧化碳含量的变化,但之前最高只测量到35千米的高度。

    参与研究的彼得·伯纳斯教授说,二氧化碳在大气底层积累会导致“温室效应”和气温升高,但在热层这个高度二氧化碳含量上升,反而会导致气温下降。这是因为热层中气体稀薄,二氧化碳绝对含量低,还不足以引发温室效应;同时二氧化碳分子会从周围吸取热量并将热量辐射到宇宙空间,使温度降低。

    研究人员说,热层的二氧化碳浓度增加,可能对这一高度范围内的卫星造成影响。因为气温下降,气体密度变低,气体对卫星的阻力也会减小,长期作用下可能会导致卫星轨道变化。

    据介绍,此前曾发现过一些卫星轨道的变化,并据此推测热层的气体密度在降低,但原因不是很清楚。本次研究表明其原因可能就是人类大量排放的二氧化碳逐渐向上扩散到了热层大气之中

    5相关报道

    编辑

    地球热层发生大规模收缩

    在刊登于6月19日《地球物理学研究快报》上的一篇研究论文中,研究人员公布了他们的发现。论文主执笔人、美国海军研究实验室的约翰·埃默特表示:“这是在至少43年内热层出现的规模最大的一次收缩,可谓太空时代的一项纪录。”

    此次热层塌陷在太阳并不活跃的时期出现,也就是2008年至2009年的太阳极小期。在太阳极小期,热层温度降低并收缩,但最近的收缩却是低太阳活跃性所能解释的两到三倍。埃默特说:“一定发生了一些我们并不了解的事情。”

    热层高悬于地面之上,靠近地球与太空边缘的交汇处,距地面高度在55英里(约合90公里)至370英里(约合600公里)之间。卫星和流星在这一高度飞过,极光则在这一高度闪耀。热层与太阳联系紧密,受太阳活跃性高低周期影响程度较大。这个气层能够在远紫外线抵达地球前对其进行拦截。在活跃性较高时,太阳的远紫外线加热热层,使其膨胀,就像是一个置于营火上方的棉花糖。活跃性较低时,便会发生相反的事情。太阳最近的活跃性极低。2008年和2009年,太阳黑子数量极少,太阳耀斑几乎不存在,太阳远紫外线则走向衰败。然而,2008年至2009年的热层收缩程度不仅超过以往任何时候,同时也无法单用太阳活跃性加以解释。

    为了计算这种收缩,埃默特对1967年至2010年绕地球轨道运行的5000多颗卫星的衰减率进行了分析。分析提供了一个涵盖整个太空时代的热层密度、温度和压力的时空样本。埃默特表示,热层中的二氧化碳似乎可以在解释大气收缩过程中扮演角色。这种气体充当了一个冷却剂,通过红外辐射释放热量。众所周知,地球大气中的二氧化碳水平一直持增长之势。更多的二氧化碳会放大太阳极小期的冷却作用。埃默特说:“但事情并不是这么简单。即使利用我们对充当冷却剂的二氧化碳如何产生影响的了解将这一因素考虑在内,我们也无法完全解释热层的大规模收缩。”研究人员希望对这个上层大气层的进一步监测能够帮助他们揭开谜团。

    https://baike.sogou.com/v165955551.htm?ch=frombaikevr&fromTitle=%E7%83%AD%E5%B1%82



    https://blog.sciencenet.cn/blog-2277-1428181.html

    上一篇:[转载]国家气候中心回应每经:夏季有可能进入拉尼娜状态
    下一篇:2024年4月4日午报:强震频发使厄尔尼诺指数进入快速下降区间
    收藏 IP: 221.9.93.*| 热度|

    4 宁利中 郑永军 周少祥 张学文

    该博文允许注册用户评论 请点击登录 评论 (0 个评论)

    数据加载中...

    Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

    GMT+8, 2024-11-24 01:49

    Powered by ScienceNet.cn

    Copyright © 2007- 中国科学报社

    返回顶部