||
发现:太阳风使地球内磁尾自转形成液态核幔边界
杨学祥,杨冬红
极地涡旋的形成
图1 极地涡旋和全球大气环流示意图
M.B.斯托瓦斯把地球作为体积不随时间变化的不等速的二轴椭球体,计算了它的基本参数随扁率或偏心率变化而发生的变化,得出南北纬35o线不随扁率变化而伸缩,由于其固定不变的特性而称为临界纬度。相反,南北纬62o与赤道纬度,当地球扁率发生变化时,互为消长,称为共轭纬度[3]。0o和62o共轭纬度以及35o临界纬度在大气环流和海洋环流中的特殊作用,表明地球扁率变化在大气环流和海洋环流中可能起到某中特殊作用。
全球性地表风带和气压带由赤道向两极依次为:赤道无风带(低压带)、纬度为0-30度的南北两个信风带(贸易风带)、纬度为30-35度南北两个亚热带无风带(高压带)、纬度为35-60度左右南北两个盛行西风带、纬度60度左右南北两个多风暴带(低压带)、纬度60度以上南北两个寒带东风带与极地高压带。特别值得重视的是相邻两个风带之间的过渡带,即0度,南北30-35度,南北60度的5个纬度带,其两侧空气水平流动方向明显不同,故称为大气临界纬度。这是北纬30-35度线多灾多难的主要原因。
https://blog.sciencenet.cn/blog-2277-1173615.html
图2 太阳风压缩地磁层形成地磁内磁尾和外磁尾(杨学祥等,1997)
太阳风不仅使地球产生磁尾,而且使地球产生气尾和臭氧洞
臭氧洞的存在和扩大与地球公转轨道有关
南极臭氧洞(Antarctic ozone hole)是指南极上空出现的臭氧层空洞,由英国南极考察科学家在1985年首次报道发现。这里所指的空洞,并不是说整个臭氧层消失了,而是指大气中的臭氧含量减小到一定程度。
每年的8月下旬至9月下旬,在20千米高度的南极大陆上空,臭氧总量开始减少,10月初出现最大空洞,面积达2000多万平方千米,覆盖整个南极大陆及南美的南端,11月份臭氧才重新增加,空洞消失。
1999年我们就撰文就指出,造成南极上空臭氧空洞的“罪魁祸首”是太阳风,而不是通常所认为人类使用的氟利昂。这一观点发表在今年5月份出版的《科学美国人》杂志中文版上。杨教授在论文中指出,有3个因素结合起来使南极臭氧层出现空洞:太阳风的压力使地球南极上空大气层变薄;处于开裂期的地球南半球由于火山爆发释放出大量有害气体破坏臭氧层;太阳高能粒子进入地球大气层后消耗了两极臭氧。
根据地球公转轨道,秋分(9月22-24日)到冬至(12月21-23日),南极的极昼使太阳辐射对南极最强,产生南极的臭氧洞(或臭氧稀薄区);春分(3月20-22日)到夏至(6月21-22日,北极的极昼使太阳对北极辐射最强,易产生北极的臭氧洞(或臭氧稀薄区)。其中,2010年冰岛火山的异常喷发规模最大,火山灰集中在北极,降温和破坏臭氧的作用值得关注。由于地球近日点在1月3日或4日,远日点在7月2日或3日,这是南极比北极更容易出现臭氧洞的原因,也是臭氧洞季节性变化的原因。臭氧洞应该周期性地在南北两极轮流出现。
事实上,北半球也可能出现臭氧洞事件,历史上,北极在1997年、2011年和2020年都出现了较大规模的臭氧洞。
地球南北极都出现过臭氧洞,证实了我们的理论。彗星的轨道是一个偏心率很大的椭圆,受太阳风压力作用,在近日点彗尾最长,在远日点彗尾最短。同样,地球轨道也是一个椭圆,在近日点气尾最长,在远日点气尾最短。这是南极臭氧洞比北极臭氧洞面积大,存在时间长的原因(见图2-3)。
两极臭氧洞首先是自然的产物。极夜和极昼的交替,极涡和低温条件,火山灰向极地的集中,臭氧洞在南北两极的轮换,都是自然规律运作的结果,远非人力所能控制。北半球大陆集中,人口稠密,如果《蒙特利尔议定书》的努力只是将臭氧洞从南极迁移到北极,这项成功究竟是福音还是灾难?
2011年北极臭氧减少的背景是:太阳活动由2009年的谷值向2013年的峰值过渡,太阳高能粒子活动逐渐增强;2011年1-3月北半球受到低温暴雪的袭击,低温和北极涛动强烈;2010年3月爆发的冰岛火山喷发,巨量的火山灰不仅降低了气温,而且破坏了臭氧。
北极臭氧洞在氟利昂停滞消耗臭氧的条件下产生,自然规律再次出人意料地证实了自身的存在,人类的努力如猴子捞月亮,劳而无功,甚至帮了个倒忙。例如,2020年3月北极出现臭氧洞,2020年9月南极出现臭氧洞,通过它们进入两极的太阳高能粒子,阻止和减弱了新冠病毒的爆发和发展。
https://blog.sciencenet.cn/blog-2277-1332162.html
图3 太阳风压缩大气层背光流动形成两极地区极昼时臭氧洞(或臭氧稀薄区)和极夜时气尾
由图2-3可见,太阳风压缩大气层背光流动形成两极地区极昼时臭氧洞(或臭氧稀薄区)和极夜时气尾;太阳风压缩地磁层背光流动形成两极极夜时外磁尾和内磁尾。它们背光旋转,24小时旋转一周。
极地涡旋是元凶
2020年春季北极上空的臭氧洞规模达到100多万平方公里,成为史上最大的北极臭氧洞。这次臭氧洞的产生主要是源自平流层极区异常强大的极涡,极涡隔绝了南北热量和空气交换,在极区低温环境里形成臭氧洞,随着春末极涡的分裂,臭氧洞也随之消失。
https://www.sohu.com/a/394495866_99907401
2020南极臭氧洞变大:极地涡旋是元凶,恢复之路任重而道远。
当平流层温度变低时,空洞内的臭氧浓度就会减少,特别是在低于–78°C的温度下形成平流层云时,这些高空云在太阳辐射的情况下有助于增加氟氯烃等化学物质的化学反应,从而导致臭氧消耗,进一步减少臭氧层。最近的极地涡旋使地球大气层保持极冷,从而形成了极地平流层云。在过去的几周中,阳光再次回到南极,该地区的臭氧层持续消耗。
尽管2020年的臭氧空洞并不是有记录以来的最高值,小于2000年的2990万平方公里,但其意义仍然重大,洞口也是近年来最深的洞之一。研究人员表示,2020年的这一事件是由强烈的极地涡旋驱动的,不会成为永久状态,而2019年创纪录的异常小而短暂的臭氧空洞则是由于特殊的高温气象条件造成的。
https://www.163.com/dy/article/FSHKO7IV0512GVI0.html
图4 太阳风压缩大气层背光流动形成两极地区极昼时臭氧洞(或臭氧稀薄区)、极地涡旋和极夜时气尾(杨学祥,杨冬红;2022)
太阳风压缩大气层背光流动形成臭氧洞,由于科里奥利的作用,背光流动的大气将在极昼区加强极地涡旋,形成阻止含臭氧的大气进入极区的特殊表象。极涡的低压中心进一步加剧臭氧洞的扩大。
行星连珠与地球自转的对应性:行星会聚周期和地球自转速度变化
观测和理论分析表明,潮汐中、短周期与地球自转速度变化有很好的对应性,这种对应性在地震火山活动和冷空气活动中也有很好的表现,成为强潮汐激发地震火山活动和冷空气活动的证据[1]。这是潮汐激发地震程度的客观尺度。
根据罗时芳等人(1974)和任振球等人(1990)的研究,地球自转周期11.169年对应11.2年太阳黑子周期、12.15年对应12.01年木星相似会合周期、18.6年对应月亮赤纬角的变化周期、19.855年对应19.858年木星、土星会合周期、22.337年对应22.2年太阳磁周、29.783年对应29.46年土星公转恒星周期、59.555年周期对应59和60年木星、土星、水星相似会合周期,显示地球自转与行星潮汐的对应关系(见表1)[2, 3]。
198.72年是太阳黑子长周期和九大行星会聚(九星连珠)周期,被一些专家认定为灾害周期发生的天文原因[3]。
表1 地球自转变化的长周期
(据罗时芳[2],1977;任振球[3],1990;杨学祥[4],1998;杨冬红修改,2009)
地球自转周期(年) | 振 幅 (毫秒) | 对应天文周期(年)
|
178.698 89.348 59.555
45.0
34.503 29.783
22.337
19.855
18.6 12.15 11.169 9.2 | 0.385 0.803 1.239 0.304
0.215 0.521
0.434
0.189
0.521 0.141 0.162 0.184 | 198.72,太阳黑子长周期;九大行星会聚周期 89.757,太阳黑子长周期;89.36,九星会聚之半 57.119,太阳黑子长周期;59.573,木星、土星会合周期;59和60,木星、土星、水星相似会合周期;59.88,潮汐混合周期* 45.39,土星、天王星会合周期;44.548,朔望周期与近点月周期的合成周期4倍* 35.88,土星、海王星会合周期;37.22,月亮交点进动双周; 33.4,近点月与日月大潮合成周期* 29.46,土星公转周期;30.02,土星相似会合周期;29.95,潮汐合成周期* 22.2,太阳磁周;22.014,朔望周期与交点月周期的合成周期*;22.274,朔望周期与近点月周期的合成周期*;22.0879,月亮视赤纬角月变化周期与朔望周期的合成周期* 19.858,木星、土星会合周期;19.99,水星相似会合周期;19.96,交点月周期、近点月周期、朔望周期两两合成周期(2.0533、2.2014、2.2087)的会合周期* 18.61,月亮交点进动周期,月亮赤纬角变化周期 9.9-13.035,太阳黑子周期;12.01,木星相似会合周期 11.2,太阳黑子周期;11.007,朔望周期与月亮交点周期的合成周期*;11.137,朔望周期与近点月周期的合成周期*;11.0439,月亮视赤纬角月变化周期与朔望周期的合成周期* 8.9-9.4,太阳黑子周期;9.2多项潮汐合成周期* |
注:带*号者为杨冬红计算得出。
http://blog.sciencenet.cn/blog-2277-349016.html
地球自转周期的振幅:潮汐激发地球自转速度变化程度的客观尺度
地球自转周期的振幅是潮汐激发地球自转程度的客观尺度,按由大到小循序排列如下:
1. 60年木星、土星会合周期的振幅为1.239毫秒;
2. 18.6年月亮赤纬角变化周期的振幅为0.521毫秒;
3. 30年土星公转周期、土星相似会合周期、潮汐合成周期的振幅为0.521毫秒;
4. 179年九大行星会聚周期的振幅为0.385毫秒;
5. 45年的土星、天王星会合周期的振幅为0.304毫秒;
6. 34.5年近点月与日月大潮合成周期振幅为0.215毫秒。双倍周期为69年,最接近70年周期。
7. 19.855年木星、土星会合周期振幅为0.198毫秒;
8. 12年的木星相似会合周期的振幅为0.141毫秒;
https://blog.sciencenet.cn/blog-2277-1275437.html
根据转动惯量守恒地理,地球的扁率受日月引潮力作用而发生周期变化,并使地球自转速度发生相应的变化:地球扁率变大,自转速度变小;地球扁率变小,自转速度变大。
黄赤交角为23.5o,当太阳的位置由南北回归线移向赤道,地球扁率变大,由此造成地球自转速度的半年周期变化。
当地球由远日点运动到近日点时,太阳引潮力的强度增加10%,由此造成地球自转速度的年变化。
白赤交角,即月亮赤纬角在18.6-28.6度之间变动,由此引发地球自转速度的18.6年、27.3天、13.6天变化周期。
实际上,每年4月9日-7月28日及11月18日-1月23日为地球自转加速阶段;1月25日-4月7日及7月30日-11月6日为地球自转减速阶段[10, 11]。快慢时段的昼夜时间(日长)长短的差别不超过几千分之几秒,但是这种变化可以影响到气象事件,与计算值量级完全相符。
http://blog.sciencenet.cn/blog-2277-936571.html
总之,月亮潮汐强度最大,太阳潮汐次之,相比之下,行星潮汐可以忽略不计。只有在日月大潮时,行星潮汐才能发挥作用(例如,2021年2月8-11日强潮汐组合)。
https://blog.sciencenet.cn/blog-2277-1374685.html
地球内核反向旋转周期:6年、12年、20年、30年、70年,与日月潮汐以及行星潮汐相关。内核自转减慢直至反向是地球内磁尾在太阳风的压力下绕固体地球反向自转的结果,其转向周期受地球自转周期控制。
事实上,我们2022年3月就发现了地球内外磁尾绕固体地球反向旋转。
地磁场的起源:地球内磁尾和外磁尾中电子绕地旋转
地球存在磁场的原因还不为人所知,普遍认为是由地核内液态铁的流动引起的。最具代表性的假说是“发电机理论”。1945年,美国物理学家埃尔萨塞根据磁流体发电机的原理,认为当液态的外地核在最初的微弱磁场中运动,像磁流体发电机一样产生电流,电流的磁场又使原来的弱磁场增强,这样外地核物质与磁场相互作用,使原来的弱磁场不断加强。由于摩擦生热的消耗,磁场增加到一定程度就稳定下来,形成了现在的地磁场。
还有一种假说认为铁磁质在770℃(居里温度)的高温中磁性会完全消失。在地层深处的高温状态下,铁会达到并超过自身的熔点呈现液态,决不会形成地球磁场。而应用“磁现象的电本质”来做解释,认为按照物理学研究的结果,高温、高压中的物质,其原子的核外电子会被加速而向外逃逸。所以,地核在6000K的高温和360万个大气压的环境中会有大量的电子逃逸出来,地幔间会形成负电层。按照麦克斯韦的电磁理论:电动生磁,磁动生电。所以,要形成地球南北极式的磁场,必然需要形成旋转的电场,而地球自转必然会造成地幔负电层旋转,即旋转的负电场,磁场由此而生。
这一假说的致命弱点是,地幔间形成负电层相对于地壳和地幔是固定不动的,并没有旋转,因此不能形成地球磁场。
1998年我们发现,太阳风压缩地球磁层产生背光的外磁尾和内磁尾,是环绕地球各圈层旋转的,包括地壳、地幔和固体内核。内磁尾和外磁尾中的带电粒子绕核旋转、绕地壳地幔旋转,形成地磁场。这一发现发表在参考文献的论文和论著中。内磁尾是当时的定义,现在看来,称为“外核尾”比较准确。
在太阳磁场的挤压下,伴随地球自转,外核中的内磁尾环绕内核旋转,内磁尾(外核尾)里的多余电子环绕内核旋转而产生地球磁场。或许与地球外磁层类似,电子携带的负电荷与质子携带的正电荷分布在内磁尾(外核尾)的不同高度。最合理的解释是,内磁尾(外核尾)集中了一种电荷,电子携带的负电荷或质子携带的正电荷,电荷极性的改变导致地磁极性倒转。
https://blog.sciencenet.cn/blog-2277-1327821.html
太阳风的压力导致核幔边界的热能积累
地球的内磁尾和外磁尾绕地球旋转,将自转动能转变为热能,集中在核幔边界和 大气上界,这是超级火山喷发来自核幔边界的原因。
由于地核相对地壳地幔的差异旋转,核幔角动量交换使部分旋转动能转变为热能积累在核幔边界(赤道处的核幔速度差最大,积累的热能最多)。超级热幔柱在海底赤道区喷发,加热了底层海水,并引发赤道和两极之间的海洋整体热循环,降低了赤道和两极大气的温差,使两极的海温和气温逐渐上升到冰点以上,形成中生代全球无冰温暖气候。有证据表明,随着热幔柱喷发强度的减弱,近一亿年间海洋底层水冷却了摄氏15℃,大气冷却了10~15℃。海底火山活动引发的深海热对流在全球气候变化中的作用不容忽视。表1给出了这种地质旋回与地球自转周期的相关关系,热幔柱强烈喷发导致大量生物灭绝[24]。
表2 地球自转周期与地质旋回
时间 地球自转 全球气候 生物灭绝事件 热幔柱喷发 /Ma 形成物 体积/106km3 |
140 加快 温暖期 (远银心点)
120 加快 温暖期 不明显 (水下喷发) 翁通爪哇海台 36 110 加快 温暖期 大规模生物灭绝 凯尔盖朗海台 变小 65 加快高峰 温暖期 恐龙灭绝,所有物种近 德干暗色岩 变小 一半灭绝 55 减慢 变冷 许多深海有孔虫类和 北大西洋火山 变小 陆生哺乳动物灭绝 边缘 15 减慢 变冷 大规模物种灭绝 哥伦比亚河溢 1.3 流玄武岩 -8 减慢 大冰期 (近银心点) |
现代火山活动有明显致冷的记录。短周期的对应关系是:小冰期对应强火山活动,小气候最适期对应弱火山活动。但是,火山长周期的对应关系却是:火山活动峰值与全球无冰期对应,而谷值与大冰期对应[14, 42]。
据Coffin和Eldholm(1993)海洋考察结果,巨大火成区所显示的大陆溢流玄武岩和大洋溢流玄武岩的喷发强度与全球高温和大气CO2高浓度对应(见图5-7)[43]。
图5 全球巨大火成区
图6 1.5亿年以来海平面变化、全球气温变化、黑色岩、大规模生物灭绝
图7 1.2亿年以来热幔柱喷发的规模比较:规模变小与气温变冷对应
120Ma前海底热幔柱喷发形成翁通爪哇海台,其释放的热量为6×1026J,海洋的质量为1.45×1024g,可使全球海水温度增高33℃,平均每万年海温升高0.1℃[42]。有证据表明,在古新世末不到6000年的时间内大洋底层水增温40C以上[33]。海底火山活动引发的海温增高和CO2排放在全球气候变化中的作用不容忽视,这是白垩纪强烈火山活动、大气中高浓度CO2和异常高温一一对应的原因。最近发现在15~20Ma前南极的夏季温度要比现在高出大约11℃,最高可以达到大约7℃。这一南极地区的“绿化”过程最高峰大致出现在中新世中期,距今大约16.4~15.7Ma。中新世中期的温暖环境被认为应当对应于400~600ppm的大气二氧化碳浓度[44]。15 Ma前发生的哥伦比亚溢流玄武岩喷发是大气CO2浓度增加的原因(见图2)。
1000km3熔岩要释放1.6×1013 kg的CO2,3×1012kg的硫和3×1010kg的卤素。一个巨大火成区的累积过程要发生上千次这样的喷发,它使现代人类造成的污染物产生的影响相形见绌[42]。120Ma前海底热幔柱喷发形成翁通爪哇海台的体积为36×106km3,15 Ma前发生的哥伦比亚溢流玄武岩体积为1.3×106km3,释放的CO2分别为5.8×1017 kg和2.1×1016 kg。
Engel and Engel给出了北美火山喷发曲线[45],Larson给出了1.5亿年以来全球地磁、洋壳产量、古温度、古海平面、黑色页岩的异常变化[46],与图5-7的变化趋势基本一致。
根据地质和气象等综合数据,表3给出地球自转周期、地质旋回、气候变化和地磁变化的对应规律,与图1和图2的地球自转变化曲线和火山活动变化曲线相对应。特别值得指出的是,地壳相对地核自转减慢对应地磁反向,地壳相对地核自转加快对应地磁正向,这一现象的发现为地球各圈层差异旋转影响地磁反向提供了证据。
理论模型研究和实际测量表明,地球内核自转较快,地壳和地幔自转较慢,形成地球内外圈层的差异旋转,核幔边界不仅是热交换边界,而且是圈层角动量交换的边界。圈层角动量使地壳和地幔自转变快,内核自转变慢,部分动能转化为热能积累在核幔边界。这是地球自转加速对应大规模热幔柱喷发的原因[11-15]。
表3 地球自转周期、地质旋回和地磁极性倒转[1, 2, 16, 21]
地质界线 | 新生代/现在 | 中生代/新生代 | 侏罗纪/白垩纪 | 古生代/中生代 | 石炭纪/二叠纪 | 下古生代/上古生代 |
年代/102Ma | 0 | 0.65 | 1.36 | 2.25 | 2.80 | 3.45 |
太阳系位置 | 近银心点 | 远银心点 | 近银心点 | |||
地壳自转 | 减慢 | 加快 | 减慢 | |||
火山活动 | 喷发最弱 | 喷发中等 | 喷发最强 | 喷发中等 | 喷发最弱 | 喷发中等 |
海陆变动 | 大陆为主最大海退 | 由主要是海变为大陆 | 最大海侵 | 由主要是大陆变到海 | 大陆为主最大海退 | 由主要是海变到大陆 |
气候变化 | 第四纪大冰期 | 温暖期 | 石炭二叠纪大冰期 | |||
陆海分布类型 | 大陆集中在北极 | 大陆分散在赤道 | 大陆集中在南极 | |||
造山作用 生物灭绝 | 第三纪大褶皱 | 白垩纪恐龙灭绝 | 石炭二叠纪大褶皱 | |||
地磁极性 | 反向 | 正向 | 反向 |
http://blog.sciencenet.cn/blog-2277-803354.html
http://blog.sciencenet.cn/blog-2277-347830.html
参考文献1
杨冬红, 杨学祥. 地球自转速度变化规律的研究和计算模型. 地球物理学进展, 2013,28(1):58-70。
杨冬红,杨学祥. 全球气候变化的成因初探. 地球物理学进展. 2013, 28(4): 1666-1677.
杨冬红, 杨学祥.灾害频发和地磁减弱的关系. 世界地质,2011, 30(3): 474~480
杨学祥。火山作用的双重性:短期致冷和长期致热。2010-1-31 06:19。科学网。http://blog.sciencenet.cn/blog-2277-291543.html
参考文献2
1. 杨冬红,杨学祥,刘财。2004年12月26日印尼地震海啸与全球低温。地球物理学进展。2006,21(3):1023-1027
Yang Donghong,Yang Xxuexiang, Liu Cai. Global low temperature, earthquake and tsunami (Dec. 26, 2004) inIndonesia[J].Progress in Geophysics, 2006, 21(3): 1023~1027.
2. 杨学祥, 杨冬红. 全球进入特大地震频发期. 百科知识2008.07上,《百科知识》2008/07上, 8-9.
3. 杨冬红,杨学祥。全球变暖减速与郭增建的“海震调温假说”。地球物理学进展。2008Vol. 23 (6): 1813~1818
Yang D H, Yang XX. The hypothesis of the ocesnic earthquakes adjusting climate slowdown ofglobal warming. Progress in Geophysics (in Chinese), 2008, 23(6): 1813-1818.
4. 杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011,54(4):926-934.
Yang D H,Yang D B, Yang X X, The influence oftidesandearthquakes in globalclimatechanges. Chinese Journal of geophysics (in Chinese),2011, 54(4): 926-934
5. 杨冬红, 杨学祥. 灾害链警钟:长白山火山喷发和小冰期相互作用及其危害. 第三届中国防灾减灾之路学术研讨会:纪念唐山抗震40周年暨平安京津冀学术研讨会论文集。2016:209-215.
6. 杨冬红, 杨学祥. 直面巨灾威胁:气象-地震-经济超级灾害链周期及其预测方法. . 第三届中国防灾减灾之路学术研讨会:纪念唐山抗震40周年暨平安京津冀学术研讨会论文集。 2016:201-208.
7. 曾佐勋,刘根深,李献瑞,贺赤诚,杨学祥,杨冬红。鲁甸地震(Ms6.5)临震预测、中期预测 及中地壳流变结构。DOI::10.3799/dqkx.2014.159。地球科学。2014,39(12):1751-1762.
8. 杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.
Yang Dong-hong. 2009.Tidal Periodicity and its Application in Disasters Prediction[D]. [Ph. D.thesis]. Changchun:College of Geo-exploration Science and Technology, Jilin University.
9. 杨冬红, 杨学祥.2013.a 地球自转速度变化规律的研究和计算模型. 地球物理学进展, 28(1):58-70。
Yang D H, Yang XX. 2013a. Study and model on variation ofEarth’s Rotation speed. Progress inGeophysics (in Chinese), 28(1):58-70.
10. 杨冬红,杨学祥。“拉马德雷”冷位相时期的全球强震和灾害。西北地震学报。2006,28(1):95-96
11. 杨冬红, 杨学祥. 自然灾害的周期研究及其成因探讨. 黑龙江气象. 2017.第34卷第4期P13-15
https://blog.sciencenet.cn/blog-2277-1253431.html
参考文献3
1. 杨学祥, 陈殿友, 宋秀环. 太阳风、地球磁层与臭氧层空洞. 科学(中文版), 1999, (5):58~59
2.杨学祥,陈殿友. 地球差异旋转动力学. 长春:吉林大学出版社. 1998.79,88,103,113,155,174,196
3. Yang, Xuexiang, Chen Dianyou, Gao Yanwei, Su Hongliang and Yang Xiaoying, et al, Geophysical and Chemical. Evidence in the Depletion of Ozone. J. Geosci. Res. NE Asia, 1999, 2 (2): 121~133.
4.杨学祥,等. 对地球质心偏移及板块驱动力的讨论. 长春地质学院学报.1993,23(4):470-475.
5. 杨学祥. 臭氧洞漏能效应及其形成原因. 见: 中国地球物理学会年刊1999, 合肥:安徽技术出版社, 1999, 191
http://blog.sciencenet.cn/blog-2277-996823.html
https://blog.sciencenet.cn/blog-2277-1295007.html
https://blog.sciencenet.cn/blog-2277-1317774.html
https://wap.sciencenet.cn/blog-2277-1374728.html
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 08:04
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社