2023年6 月13日早报:厄尔尼诺指数进入快速下降区间 杨学祥 关键提示: 潮汐组合类型转换具有 13.6天周期,即双周循环,这在图 1-2中都有明显的表现。除此之外,两周之内厄尔尼诺指数往往出现两个峰值和两个谷值,即次一级的 7天周期。这一 周期在气温变化中也有明显的表现(见图 1)。
https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1388780
潮汐不仅有 13.6天周期,而且存在 7.1天和 9.1天周期。 1921年杜德生对月亮和太阳引潮力位进行了严格的调和级数展开,在展开中约有 90项长周期成分。其中振幅超过这 90项长周期振幅之和的 0.5%的共有 20个,在这 20个中就有 9天项和 7天项(见图 1)。
NASA的 SABER卫星首次观测到因周期性的高速太阳风而产生的地球上层大气层的 “呼吸 ”——一种膨胀和收缩的活动。根据美国最新的卫星观测结果,地球大气层正在有序地扩大和收缩,平均每九天就有一个周期!地球似乎在缓慢地呼吸,地球每天都在波动,在 0.5到 0.8米的范围内波动。
随着太阳的 27天的自转周期,这些太阳风通常以 9天为周期冲击地球。高速太阳风有时候显示出的是七天的周期性。
http://blog.sciencenet.cn/blog-2277-1288792.html
https://blog.sciencenet.cn/blog-2277-1358948.html
https://blog.sciencenet.cn/blog-2277-1358222.html
精准预测正在得到证实
https://blog.sciencenet.cn/blog-2277-1358222.html
图1 2023 年06月12日06时厄尔尼诺指数为+ 0.752 ,比 2023 年06月12 日00时厄尔尼诺指数为+ 0.766 ,减速 0.014, 减速变慢 ,进入快速下降区间和+0.5以上的厄尔尼诺区间(-0.5以下为拉尼娜,+0.5以上为厄尔尼诺),与南极半岛海冰异常减少对应,与6月10-12日弱潮汐组合对应,与7-9天下降期对应,与频繁强震对应。 月亮赤纬角最小值对应下降区间(已被证实),月亮赤纬角最大值对应上升区间,与南极半岛海冰异常减少有关,上升仍是主要趋势。
我们早就指出, 10月南极半岛海冰开始减少,导致厄尔尼诺指数变化以上升为主,强潮汐组合也无能为力,无法阻挡(明显滞后)。2023年2月南极半岛海冰达到极小值,厄尔尼诺指数快速上升,可能完成由三重拉尼娜向厄尔尼诺的转换, 2023年流感和新冠叠加可能发生。根据潮汐组合,拉尼娜高潮至少持续到2022年11月,12月开始减弱,2023年2月前结束(每年2月南极半岛海冰达到极小值,有利于厄尔尼诺形成)。但是,频繁的深部地震延长和加强了拉尼娜。
https://blog.sciencenet.cn/blog-2277-1358948.html
https://blog.sciencenet.cn/blog-2277-1358222.html
图2 2023 年06月12日12时厄尔尼诺指数为+ 0.741 ,比 2023 年06月12 日06时厄尔尼诺指数为+ 0.752 ,减速 0.011, 减速变慢 ,进入快速下降区间和+0.5以上的厄尔尼诺区间(-0.5以下为拉尼娜,+0.5以上为厄尔尼诺),与南极半岛海冰异常减少对应,与6月10-12日弱潮汐组合对应,与7-9天下降期对应,与频繁强震对应。 月亮赤纬角最小值对应下降区间(已被证实),月亮赤纬角最大值对应上升区间,与南极半岛海冰异常减少有关,上升仍是主要趋势。
我们早就指出, 10月南极半岛海冰开始减少,导致厄尔尼诺指数变化以上升为主,强潮汐组合也无能为力,无法阻挡(明显滞后)。2023年2月南极半岛海冰达到极小值,厄尔尼诺指数快速上升,可能完成由三重拉尼娜向厄尔尼诺的转换, 2023年流感和新冠叠加可能发生。根据潮汐组合,拉尼娜高潮至少持续到2022年11月,12月开始减弱,2023年2月前结束(每年2月南极半岛海冰达到极小值,有利于厄尔尼诺形成)。但是,频繁的深部地震延长和加强了拉尼娜。
https://blog.sciencenet.cn/blog-2277-1358948.html
https://blog.sciencenet.cn/blog-2277-1358222.html
3-5月潮汐组合不利于厄尔尼 诺形成的推测得到初步证实:我们在3月2日指出,强潮汐组合控制强潮汐南北震荡的幅度,是赤道太平洋海温的重要控制因素。根据潮汐组合预报,2023年1-2月、6-8月、12月有利于厄尔尼诺的形成;3-5月、9-11月有利于拉尼娜形成。 所以,厄尔尼诺发生在2023年6-8月的可能性最大。
https://blog.sciencenet.cn/blog-2277-1378601.html
https://blog.sciencenet.cn/blog-2277-1361960.html
图3 厄尔尼诺3区2023-06-13厄尔尼诺指数变化
2022 年5-8月潮汐组合不利于拉尼娜发展,9月潮汐组合和南极海冰最大值有利于拉尼娜形成。
从7月15日开始,厄尔尼诺指数高于-0.5,拉尼娜事件结束。本预测提前被证实。
我们在8月14日特别指出,7月29日拉尼娜卷土重来,证明南极半岛海冰正在异常增加。8月12-15日强潮汐组合时期是起始点:此后,拉尼娜将进入高速发展时期,潮汐组合类型和南极海冰增加有利于拉尼娜发展,9月末达到峰值。
2023年2月南极海冰面积最小值减弱秘鲁寒流、导致厄尔尼诺3区厄尔尼诺指数显著上升,突破-0.5阈值,结束拉尼娜。.
2023 年04月19 日12时厄尔尼诺指数为+ 0.095进入谷值。2023 年04月22 日00时厄尔尼诺指数为+ 0.230进入峰值。2023 年04月24 日00时厄尔尼诺指数为+ 0.174进入谷值。2023 年04月26 日12时厄尔尼诺指数为+ 0.251进入峰值。2023 年04月27 日12时厄尔尼诺指数为+ 0.241进入谷值。2023 年04月30 日00时厄尔尼诺指数为+ 0.327进入峰值。2023 年05月03 日00时厄尔尼诺指数为+ 0.237进入谷值。2023 年05月11 日00时厄尔尼诺指数为+ 0.392进入峰值。2023 年05月12 日00时厄尔尼诺指数为+ 0.374进入谷值。2023 年05月16 日06时厄尔尼诺指数为+ 0.533进入峰值。2023 年05月20 日12时厄尔尼诺指数为+ 0.378进入谷值。2023 年05月22 日00时厄尔尼诺指数为+ 0.385进入峰值。2023 年05月24 日06时厄尔尼诺指数为+ 0.358进入谷值。2023 年05月24 日18时厄尔尼诺指数为+ 0.363进入峰值。2023 年05月26 日06时厄尔尼诺指数为+ 0.324进入谷值。2023 年06月00 日00时厄尔尼诺指数为+ 0.976进入峰值。
图4 南极海冰增加趋势:2023年6月10-11日(白色为海冰,红色为热异常)南极半岛海冰比较。南极半岛海冰变化对厄尔尼诺指数的影响增大:异常减少造成秘鲁寒流减弱。
我们在2023年3月2日指出,厄尔尼诺发生在2023年6-8月的可能性最大
对厄尔尼诺和拉尼娜有影响的因素有南极半岛海冰、强潮汐南北震荡、环太平洋地震带强震、强潮汐组合。
每年2月南极半岛海冰面积最小,9月最大,控制秘鲁寒流的强弱。
环太平洋地震带强震频发导致深海冷水上翻。
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.4 2023-05-15 15:39:40 -22.90 -66.75 200 阿根廷 5.1 2023-05-14 23:32:20 0.50 126.90 100 印尼马鲁古海北部 5.5 2023-05-14 18:11:34 33.60 139.45 10 日本本州东南海域 5.3 2023-05-14 16:21:42 33.35 139.40 10 日本本州东南海域 5.5 2023-05-12 07:19:45 40.25 -120.90 10 美国加利福尼亚州
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 6.4 2023-05-18 07:02:01 15.10 -90.90 250 危地马拉
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.3 2023-05-19 15:13:43 -23.15 170.80 10 洛亚蒂群岛 7.7 2023-05-19 10:57:02 -23.10 170.70 10 洛亚蒂群岛
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.7 2023-05-19 23:15:03 12.75 49.00 10 亚丁湾
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 7.2 2023-05-20 09:50:58 -22.95 170.45 20 洛亚蒂群岛
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 6.0 2023-05-21 23:45:13 -10.20 161.50 70 所罗门群岛 6.9 2023-05-21 22:56:46 -43.30 39.25 10 爱得华王子群岛地区
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.0 2023-05-22 13:43:25 36.35 71.15 150 阿富汗 5.3 2023-05-22 06:20:04 29.75 129.35 190 琉球群岛
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.3 2023-05-22 15:51:10 -17.30 -64.05 600 玻利维亚
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 6.1 2023-05-23 14:42:01 -22.85 170.25 10 洛亚蒂群岛
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 6.1 2023-05-24 23:49:34 -7.05 129.60 170 班达海
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 6.5 2023-05-25 11:05:31 8.90 -77.10 10 哥伦比亚北岸近海
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 6.2 2023-05-26 18:03:24 35.55 140.70 50 日本本州东岸近海
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.9 2023-05-27 08:11:01 -18.40 -175.00 230 汤加群岛
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.3 2023-05-28 13:49:57 36.65 71.15 200 阿富汗 5.6 2023-05-28 11:29:55 -10.00 161.35 120 所罗门群岛
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.2 2023-05-28 23:45:58 7.10 -73.10 160 哥伦比亚
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.6 2023-05-30 08:52:09 24.15 143.15 60 日本火山列岛地区
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.7 2023-05-31 19:20:15 25.05 96.40 10 缅甸
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.9 2023-06-03 15:17:45 12.65 47.90 10 亚丁湾 5.3 2023-06-03 09:49:17 -15.85 -71.75 20 秘鲁
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.3 2023-06-03 21:58:02 12.45 48.15 10 亚丁湾
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.7 2023-06-08 17:19:32 -22.30 170.30 50 洛亚蒂群岛
震级(M) 发震时刻(UTC+8) 纬度(°) 经度(°) 深度(千米) 参考位置 5.6 2023-06-11 21:08:47 -56.95 147.60 10 麦夸里岛地区 6.2 2023-06-11 17:54:45 42.50 142.00 130 日本北海道
强潮汐组合控制强潮汐南北震荡的幅度,是赤道太平洋海温的重要控制因素。根据潮汐组合预报,2023年1-2月、6-8月、12月有利于厄尔尼诺的形成;3-5月、9-11月有利于拉尼娜形成。 所以,厄尔尼诺发生在2023年6-8月的可能性最大。
https://blog.sciencenet.cn/blog-2277-1378601.html
南极海冰面积创历史新低
2023-02-20 15:15
科技日报讯 (实习记者张佳欣)科学家16日报告,南极冰盖面积缩小至历史最低水平,支撑南极洲地面冰盖的较厚冰架暴露在海浪和温暖的气温下。
美国国家冰雪数据中心(NSIDC)表示,近日南极洲的海冰面积降至191万平方公里,为1979年有记录以来的最低水平。此前的历史最低纪录是2022年创下的。
NSIDC在一份声明中说:“由于融化季节可能还剩几周时间,预计在达到年度最低水平之前,还会进一步下降。”
海冰融化对海平面没有明显的影响,因为冰已经在海水中了。但是,海冰环抱着南极洲的巨大冰架,这些冰架是淡水冰川的延伸,如果它们随着全球气温的上升继续融化,将在几个世纪内导致灾难性的海平面上升。
NSIDC表示,大部分南极海岸的水现在没有冰,使冰盖边缘的冰架暴露在波浪作用和变暖的条件下。
南极在夏季解冻和冬季结冰循环期间,经历了显著的年度变化。过去40年,全球变暖使格陵兰冰川和北极冰盖快速融化,南极大陆没有经历这一过程,但自2016年以来的高融化率引发了人们的担忧,显著的下降趋势可能正在形成。
此前,南极冰盖面积最小纪录是在去年2月创下的,当时漂浮在南极海洋上的冰层面积首次降至200万平方公里以下。
据欧洲哥白尼气候监测器(C3s)信息显示,今年1月份的冰层面积已创下历史新低。
尽管2022年全球范围内受到拉尼娜天气模式的降温影响,但该年仍是有记录以来第五或第六个最热的年份。
https://www.sohu.com/a/643396024_121479889
https://blog.sciencenet.cn/blog-2277-1377400.html
潮汐组合对厄尔尼诺的控制值得关注。
https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1384039
近期数据表明,由于南极半岛异常变暖(黄色区域变大),海冰异常变小,减弱秘鲁寒流,厄尔尼诺发展快于预期。
NOAA发布的2023年4月气候情况表明:
全球平均海洋温度在4月份创下历史新高,比长期平均温度高1.55华氏度,仅比2016年1月强厄尔尼诺期间创下的海洋温度纪录低0.02度。
南半球今年4月是有记录以来最热的一个月。
全球平均气温是174年来记录中第四热的四月,比20世纪平均气温56.7华氏度高了1.8度。
今年4月也是连续第530个月气温高于20世纪平均水平。
https://www.163.com/dy/article/I4POD7LI051198AK.html
南半球今年4月是有记录以来最热的一个月:南极红光、南极红雪和火山爆发 已有 270 次阅读 2023-5-16 15:46
https://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=1388243
南极半岛德雷克海峡海冰的气候开关作用
南极半岛在 3月达到平均最小海冰覆盖面积,在 9月达到最大的海冰覆盖面积。南半球和北半球的季节是相反的。南半球在 2月达到它夏天的最低点,而北半球则在 9月。
南极半岛海冰增多使西风漂流在德雷克海峡受阻,导致环南极大陆水流速度变慢和南太平洋环流速度变快,部分受阻水流北上,加强秘鲁寒流,使东太平洋表面海水变冷, 有利于拉尼娜的形成 ,加强沃克环流及增强赤道太平洋热流与南极环流的热交换,增温的南极环流使南极半岛的海冰减少;南极半岛的海冰减少使德雷克海峡水流通量增加,导致环南极大陆水流速度变快和南太平洋环流速度变慢,使部分本应北上的水流转而进入德雷克海峡,造成秘鲁海流变弱和东太平洋表面海水变暖, 有利于厄尔尼诺的形成 ,减弱沃克环流;结果使堆积在太平洋西部的暖水东流,减弱赤道太平洋热流与南极环流的热交换,降温的南极环流使南极半岛海冰增加。
2014年 3月南极半岛在 3月达到平均最小海冰覆盖面积,导致厄尔尼诺现象在 3月增强,而在 9月达到最大的海冰覆盖面积将导致厄尔尼诺现象减弱,除非 9月南极半岛海冰增多受到抑制。
图 1.全球气候的三个海冰启动开关示意图
http://blog.sciencenet.cn/blog-2277-805496.html
参考文献
杨学祥 . 厄尔尼诺现象的构造基础与激发因素. 西北地震学报, 2002, 24 (4):367-370
杨学祥 . 2003, 太平洋环流速度减慢的原因 . 世界地质 , 22(4): 380-384
杨学祥 . 大气、海洋与固体地球的能量交换 . 世界地质 , 2004, 23(1): 28-34
杨学祥 . 厄尔尼诺事件产生的原因与验证 . 自然杂志. 2004 , 26 ( 3 ): 151-155
杨学祥,杨冬红,安刚,沈柏竹。连续 18 年“暖冬”终结的原因。吉林大学学报(地球科学版), 2005 , 35 (地球探测科学与技术论文集): 137-140
杨冬红,杨学祥。澳大利亚夏季大雪与南极海冰三个气候开关。地球物理学进展。 2007 , 22 ( 5 ): 1680-1685 。
https://blog.sciencenet.cn/blog-2277-826065.html
2023年6月潮汐组合预报:弱潮汐时期
已有 1192 次阅读 2021-6-27 13:55 | 个人分类:潮汐预警 | 系统分类:论文交流
2023 年 6 月潮汐组合预报:弱潮汐时期
吉林大学:杨学祥 , 杨冬红
中国科学院国家天文台 : :韩延本 , 马利华
2023年1-3月,7-10月为强潮汐时期,4-6月,11-12月为弱潮汐时期。
潮汐组合 A : 2023 年 6 月 5 日月亮赤纬角最大值南纬 27.88 度, 6 月 4 日为日月大潮, 6 月 7 日为月亮近地潮,三者弱叠加,两者强叠加,潮汐强度大,地球扁率变小,地球自转变快,有利于厄尔尼诺发展(极强),潮汐使赤道空气向两极流动,可激发地震火山活动和暖空气活动,有利于低层偏南风的发展,带来较多水汽,造成部分地方出现大雾天气(极强)。
潮汐组合 B : 6 月 12 日为月亮赤纬角最小值北纬 0.15 度, 6 月 10 日为日月小潮,两者强叠加,潮汐强度小,地球扁率变大,地球自转变慢,有利于拉尼娜发展(弱),潮汐使两极空气向赤道流动,可激发地震火山活动和冷空气活动(弱)。
潮汐组合 C : 2023 年 6 月 18 日月亮赤纬角最大值北纬 27.85 度, 6 月 18 日为日月大潮,两者强叠加,潮汐强度大,地球扁率变小,地球自转变快,有利于厄尔尼诺发展(强),潮汐使赤道空气向两极流动,可激发地震火山活动和暖空气活动,有利于低层偏南风的发展,带来较多水汽,造成部分地方出现大雾天气(强)。
潮汐组合 D : 6 月 26 日为月亮赤纬角最小值南纬 0.02 度, 6 月 26 日为日月小潮, 6 月 23 日为月亮远地潮,三者弱叠加,两者强叠加,潮汐强度小,地球扁率变大,地球自转变慢,有利于拉尼娜发展(弱),潮汐使两极空气向赤道流动,可激发地震火山活动和冷空气活动(弱)。
计算表明,日月大潮与月亮赤纬角最小值相遇(日、月、地在赤道面成一线)使地球扁率变大,地球自转减慢,低纬度地区地球表面地壳纬向扩张,径向收缩,有利于南北挤压东西张裂的地震和火山喷发;日月大潮与月亮赤纬角最大值相遇使地球扁率变小,地球自转变快,低纬度地区地球表面地壳纬向收缩,径向扩张,有利于东西挤压南北扩张的地震和火山喷发。这是不同地区不同类型的地震在不同的潮汐组合发生的原因。
http://blog.sciencenet.cn/blog-2277-717618.html
2023-2025 年为月亮赤纬角最大值时期,与强潮汐叠加,可激发地震火山活动和冷空气活动(最强)。
https://blog.sciencenet.cn/blog-2277-1293003.html
参考文献
1. 杨冬红,杨学祥,刘财。 2004年 12月 26日印尼地震海啸与全球低温 [J]。地球物理学进展。 2006, 21( 3): 1023~ 1027。
Yang Donghong,Yang Xxuexiang, Liu Cai. Global low temperature, earthquake and tsunami (Dec. 26, 2004) inIndonesia[J].Progress in Geophysics, 2006, 21( 3) : 1023~ 1027.
2. 杨冬红,杨德彬,杨学祥 . 2011. 地震和潮汐对气候波动变化的影响 [J]. 地球物理学报, 54( 4): 926-934
Yang D H,Yang D B, Yang X X, The influence oftidesandearthquakes in globalclimatechanges. Chinese Journal of geophysics (in Chinese),2011, 54(4): 926-934
3. 杨冬红,杨学祥。全球变暖减速与郭增建的“海震调温假说”。地球物理学进展。 2008, 23 (6): 1813~ 1818。 YANG Dong-hong, YANGXue-xiang. The hypothesis of the ocesnic earthquakes adjusting climate slowdownof global warming. Progress in Geophysics. 2008, 23 (6): 1813~ 1818.
4. 杨冬红 , 杨学祥 . 北半球冰盖融化与北半球低温暴雪的相关性 [J]. 地球物理学进展 , 2014, 29(2):610-615. YANG Dong-hong, YANG Xue-xiang. Studyon the relation between ice sheets melting and low temperature in NorthernHemisphere. Progress in Geophysics. 2014, 29 (1): 610~ 615.
5. 杨学祥 , 陈震 , 刘淑琴等 . 地球内核快速旋转的发现与全球变化的轨道效应 . 地学前缘 , 1997, 4(1): 187-193.
Yang X X, Chen Z, Liu S Q, et al. The discovery of fast rotation of the earth’s inner core and orbital effect of global changes. Earth Science Frontiers (in Chinese), 1997, 4(1): 187-193.
6. 杨冬红,杨学祥 . 全球气候变化的成因初探 . 地球物理学进展 . 2013, 28(4): 1666-1677. Yang X X, Chen D Y. Study oncause of formation in Earth’ s climatic changes. Progress in Geophysics (inChinese), 2013, 28(4): 1666-1677.
7. 杨冬红 . 2009. 潮汐周期性及其在灾害预测中应用 [D][博士论文 ].长春 :吉林大学地球探测科学与技术学院 .
Yang Dong-hong. 2009.Tidal Periodicity and its Application in Disasters Prediction[D]. [Ph. D.thesis]. Changchun: College of Geo-exploration Science and Technology, Jilin University.
8. 杨冬红 , 杨学祥 .2013.a 地球自转速度变化规律的研究和计算模型 . 地球物理学进展 , 28( 1): 58-70。
Yang D H, Yang XX. 2013a. Study and model on variation ofEarth’ s Rotation speed. Progress inGeophysics (in Chinese), 28( 1): 58-70.
9. 杨冬红 , 杨学祥 . 2007b. 澳大利亚夏季大雪与南极海冰三个气候开关 . 地球物理学进展 , 22 (5): 1680-1685.
Yang D H, Yang X X. 2007b. Australia snow in summer and three ice regulators for El Nino events. Progress in Geophysics (in Chinese), 22 (5): 1680-1685.
10. 杨学祥 , 陈殿友 . 地球差异旋转动力学 . 长春 : 吉林大学出版社 , 1998, 2, 99~104, 196~198
Yang X X, Chen D Y. Geodynamics of the Earth’s differential rotation and revolution (in Chinese). Changchun: Jilin University Press, 1998, 2, 99~104, 196~198
11. 杨学祥,陈殿友。火山活动与天文周期。地质论评。 1999, 45(增刊): 33~42 YANG Xue-xiang, CHEN Dian-you. The Volcanoes and the Astronomical Cycles .Geological Review. 1999,45(supper):33~42.
12. 杨学祥 . 2001年发生厄尔尼诺事件的天文条件 [J]. 地球物理学报. 2002, 45(增刊):56-61
13. 杨学祥 , 韩延本 , 陈震 , 乔琪源 . 强潮汐激发地震火山活动的新证据 [J]. 地球物理学报 , 2004, 47( 4) : 616-621
YANG X X, HAN Y B, CHEN Z, et al. New Evidence of Earthquakes and Volcano Triggering by Strong Tides. Chinese Journal of geophysics (in Chinese), 2004, 47(4): 616~621
14. 杨学祥,陈震,陈殿友,乔琪源。 厄尔尼诺事件与强潮汐的对应关系 [J]。吉林大学学报(地球科学版), 2003,33 (1): 87-91。
15. 杨学祥,陈殿友,李守春。干旱、地震与月球赤纬角变化 [J]。西北地震学报, 1999, 21( 1): 44~47。
16. 杨学祥,宋秀环,刘淑琴。地球潮汐形变的数值评价 [J]。地壳形变与地震, 1997, 17( 2): 53-58。
17. 杨学祥,杨冬红。 2014年 1-2月潮汐组合与雾霾对应的检验。 2014天灾预测学术研讨会议论文集。 2014, 224-237,万方数据库。
18. 杨冬红 , 杨学祥 .北半球冰盖融化与北半球低温暴雪的相关性 [J]. 地球物理学进展 , 2014, 29(2): 610-615.YANG Dong-hong, YANG Xue-xiang. Studyontherelationbetween ice sheets melting and low temperature inNorthernHemisphere.Progressin Geophysics. 2014, 29 (1): 610~ 615.
19. 杨冬红,杨德彬。日食诱发厄尔尼诺现象的热 -动力机制。世界地质。 2010, 29( 4): 652-657.YangDH,Yang D B. Thermal dynamic mechanism of ElNino induced by solareclipse.GlobalGeology (in Chinese), 2010, 29 (4):652-657.
20. 杨学祥,杨冬红。 2014-2016年月亮赤纬角最小值时期雾霾进入高发期。 2013天灾预测总结研讨学术会议论文集。 2013,万方数据库。
21. 杨学祥,杨冬红。 2013年中国雾霾高发的气象原因初探。科学家 . 2014, (3): 90-91.YANG Xue-xiang,YANGDong-hong.MeteorologicalAnalysis of ReasonsCausing China'sFrequent SmogWeatherin 2013. Technology andlife. 2014, (3): 90-91.
22. 杨学祥 , 杨冬红 . 全球进入特大地震频发期 . 百科知识 2008.07上 , 8-9.
美机构惊呼:厄尔尼诺又来了 2023-06-10 13:28:25 来源: 参考消息 北京
参考消息网6月10日报道 据德新社6月8日报道,美国气象学家8日宣布,会推高全球平均气温的厄尔尼诺天气系统已经到来。
美国国家海洋和大气管理局的科学家在一份声明中说:“预期中的厄尔尼诺现象已经出现。”该局气候预测中心的米歇尔·勒赫说:“取决于其强度,厄尔尼诺现象可能造成一系列影响,比如在世界上某些地方增加出现强降雨和干旱的风险。”
该机构称,这种天气系统的影响在冬季更加明显,使美国北部地区气温高于平均水平以及从南加州到墨西哥湾沿岸这片地区降水量大于平均水平的可能性增强。
报道称,这一天气系统还可能意味着太平洋西北地区的降水量小于平均水平。
美国国家海洋和大气管理局称:“一次厄尔尼诺事件不会造成所有这些影响,但厄尔尼诺增强了这些情况发生的可能性。”
厄尔尼诺现象以及与之相反的拉尼娜现象在世界许多地区助长极端天气的出现。厄尔尼诺现象推高全球平均气温,拉尼娜现象则有降温作用。它们每隔数年就会交替出现。
https://www.163.com/dy/article/I6SGQA3D0514BQ68.html
转载本文请联系原作者获取授权,同时请注明本文来自杨学祥科学网博客。 链接地址: https://blog.sciencenet.cn/blog-2277-1391579.html
上一篇:
2023年6月12日夜报:厄尔尼诺指数进入快速下降区间 下一篇:
2023年6月13日午报:厄尔尼诺指数进入快速下降区间