全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

超级寒潮确定横扫美国,本土60度温差出现!关注2023-2025年变冷

已有 10051 次阅读 2022-12-24 08:25 |个人分类:全球变化|系统分类:论文交流

超级寒潮确定横扫美国,本土60度温差出现!超算:局部降温近30度

2022-12-22 17:03:49 来源: 中国气象爱好者 重庆  

当地时间12月20日,加拿大北部出现极寒天气,加拿大育空河谷最低达-52.0摄氏度,是1998年以来加拿大12月份首次出现-50摄氏度以下低温,也是1995年以来12月的最低温。



一、美国本土60度巨大温差出现

而-52摄氏度的极端低温,正是该地区冷源活动明显加强的证明——从超级计算机初始场分析数据上看,近期,白令海峡一带有着极为强大的阻塞高压发展,联合北极圈内的其他阻塞高压联手将北极涡旋从北极圈内捅下来,冷空气也随之大量南下。其中一部分冷气团,就堆积在北美洲多地。



像是美国,当地时间12月21日下午,从气温监测数据上看,美国西北边境地区的蒙大拿州多地气温已经跌到-30摄氏度(-23华氏度)。而与此同时,美国东南部沿海的佛罗里达半岛气温还高达27摄氏度(80华氏度),这样一来,即便是不包括阿拉斯加,美国本土都出现了南北近60度的巨大温差。



二、超级寒潮确定横扫美国

实际上,这正是一波超级寒潮的开始。目前,超级寒潮正在美国大举南下,中西部多地率先降温,在蒙大拿州多地下降至-30摄氏度后,已有气象站出现了在短短30分钟从6摄氏度(43华氏度)下降到-16摄氏度(3华氏度),降温幅度可谓相当惊人,甚至打破了该站点的温度下降纪录。即便是在南北通透兜不住风的美国,这种温差也是很罕见的。



超级计算机的预报中指出,这场激烈的大寒潮,即将在接下来几天横扫美国多地,850百帕层面距平预报上,强烈的负距平区将在美国迅速扩大,代表着冷空气将大范围的带来猛烈降温。超级计算机认为,由于冷暖气团对撞激烈,冷空气所过之处气温猛降、并伴随10~11级大风和强对流天气。



三、局部降温近30度

就以目前美国本土接近60度的巨大温差,可见冷空气出及之际暖空气仍然很强,冷空气从北冰洋直插墨西哥湾后,所到之处带来的降温将格外凶猛。像是德克萨斯州沿海,在寒潮南下前最高气温可达21摄氏度左右,但在寒潮过境后的,气温将从21摄氏度左右直降到-5摄氏度,跳水近30度。对于美国来说,很多地方将迎来下半年以来最寒冷的时刻。



https://www.163.com/dy/article/HP75DQQR0511ATND.html

汤加火山恐将搅动全球气候?加剧2023-2025年月亮赤纬角最大值时期气候变冷

已有 2441 次阅读 2022-1-17 15:26 |个人分类:全球变化|系统分类:论文交流

30年一遇大爆发!汤加火山恐将搅动全球气候?

2022年01月17日 10:00 新浪科技综合

  来源:石头科普工作室

  当地时间1月15日下午,位于南太平洋的岛国汤加王国境内一座海底火山(Hunga Tonga-Hunga Ha‘apai)发生猛烈喷发,火山喷发的同时伴有7.6级剧烈地震和海啸。

  在日本气象卫星“向日葵8号”拍摄的云图上,这次喷发过程清晰可见,极富视觉冲击力。

  火山喷发不仅产生了巨大的蘑菇云和巨量火山灰,还肉眼可见地激发了剧烈的大气重力波,导致全球海平面气压值都随之一颤。

  远在美国科罗拉多州的气象站监测到本次火山喷发带来的气压变化,达到了1百帕(0.1%大气压)

  火山喷发的强度有一系列评级标准,最常用的是火山爆发指数(VEI),由美国科学家于1982年提出。这个指数按照喷发物的流量来判断,分为0到8级,对应喷出物流量从0.00001立方千米到1000立方千米。每增加一级,喷出物流量增加为十倍。或者分为几种经验等级,从最缓和到最猛烈依次为夏威夷式、斯通波利式、伏尔坎宁式、培雷式、普林尼式和超普林尼式。

  本次汤加火山爆发等级为普林尼式,估测VEI强度为5~6级,属于本世纪以来最强,略低于1991年菲律宾皮纳图博火山喷发(6级),强于2010年冰岛火山喷发(4级)和2011年智利普耶韦火山喷发(5级)。

  剧烈的火山喷发对全球气候的影响是非常大的。通常情况下,火山喷发产生的火山灰都还是在对流层内,产生的巨大尘埃云经过大气环流的稀释、沉降,几个月之后就可以基本消除。但是,对于非常强的火山喷发,其产生的火山灰可以冲入平流层;而喷发时产生的SO₂进入平流层后,会与水蒸气反应,产生大量硫酸盐气溶胶两者共同作用下,对进入大气的太阳光产生削弱作用,更多太阳辐射被反射到太空,导致全球海平面气温下降。

  这里引入一个概念“辐射强迫”(radiative forcing),有时候也称“气候强迫”(climate forcing)它表示地球气候系统接收和发射热辐射的情况,正的辐射强迫表示地球吸收热辐射变多或释放热辐射变少,地球气温会上升;负的辐射强迫则恰好相反。火山灰通常会产生负的辐射强迫,导致地球反射太阳光增多,气温下降。

  历史上著名的1815年坦博拉火山爆发和1991年皮纳图博火山爆发都导致了次年全球气温出现下降。而在人类出现之前,地球上还出现过很多次更具毁灭性的火山喷发,巨量火山灰铺满了天空,挡住了太阳,全球进入冰川纪元,大量物种惨遭灭绝,整个降温过程在几十年甚至区区几年的时间里就完成了。

  所幸,本次火山喷发的强度比这些都要弱,它所带来的气候影响可能只是暂时的。而且,本次火山喷发位于南半球,对北半球的直接气候影响是比较弱的。

  尽管如此,由于汤加火山所处位置正好是在厄尔尼诺的重点监测区域,这里产生的剧烈大气波动会否引起更为极端的厄尔尼诺或者拉尼娜事件,仍然值得我们持续关注。

  另外,南半球的阿根廷、巴西等国都是重要的粮食产地,在新冠、蝗灾导致全球粮荒的大背景下,本次火山喷发很可能对本就形势严峻的全球粮食供应雪上加霜。

  当前我们仍然处在全球变暖的大环境之下,这次火山喷发如果导致全球气温下降,是否可以有助于缓解全球变暖,甚至扭转全球变暖的趋势?

  历史已经告诉我们答案。1991年皮纳图博火山爆发之后,一些科学家一度认为全球变暖的趋势遭到遏制,或者认为人类活动带来的气候变化完全无法比拟大自然自身的力量。然而,后来三十年的气候观测表明,尽管强大的火山喷发一度使得全球气温出现暂时下降,其影响仍然难以扭转全球变暖和海平面上升的趋势。相关的研究印证,地球气候系统对火山喷发这样极短时间内产生的剧烈变化有强大的反馈调节机制(climate feedback)。虽然火山灰遮挡了阳光,但同时也产生了大量凝结核,导致云量增加,温室效应增强,地表释放到太空的热量因此变少了,这样全球气温在短暂下降之后又很快逐渐恢复。

  如图所示,全球气温在皮纳图博火山爆发后一度下降(阴影区),但并没有改变长期的变暖趋势

  人类文明仍然需要自己想办法解决迫在眉睫的气候问题,而不是依靠所谓“上天救赎”“大自然的自我调整”。换一个角度考虑,如果类似本次火山喷发的事件层出不穷,真的扭转了全球变暖,我们恐怕更容易进入冰河世纪,而不是让气候“恰到好处”。

  本次火山喷发对全球气候的具体影响,亟待未来全球气候学家的仔细研究。当前,希望南太平洋岛国民众能挺过这次火山喷发带来的海啸灾难!

  参考文献

  1。日本气象厅卫星云图

  2。联合台风警报中心实时地震警报

  3。维基百科

  4。相关新闻图片,原始图源为推特网友

  5。科罗拉多州立大学气压观测数据

  6.NASA GISS 数据产品

  7。“皮纳图博火山”Mount Pinatubo相关研究文献

https://finance.sina.com.cn/tech/2022-01-17/doc-ikyamrmz5643783.shtml?cre=tianyi&mod=pchp&loc=17&r=0&rfunc=23&tj=cxvertical_pc_hp&tr=12


       我们在2014年5月19日指出, 根据200年冷暖周期,2020-2021年极寒爆发。

2020-2030年太阳黑子超长极小期、2000-2035年拉马德雷冷位相、2023-2025年月亮赤纬角最大值是气候变冷的三个重要因素。短期变冷将持续70年左右。

目前处于潮汐变化1800年周期的变暖期,太阳黑子超长极小期的200年和拉马德雷60年周期的变冷期,18.6年的月亮亮赤纬角极值变化的变暖周期(2021年已进入变冷期,2023-2025年月亮赤纬角最大值达到变冷高峰)。潮汐在15-17世纪小冰期时期达到最强,由于潮汐强度的长期减弱,21世纪太阳黑子超长极小期的变冷规模要小于18-19世纪道尔顿太阳黑子超长极小期的变冷规模,不可能再现17-18世纪蒙德太阳黑子超长极小期的变冷规模。再现蒙德太阳黑子超长极小期的变冷规模需要在3107年附近。

http://blog.sciencenet.cn/blog-2277-827971.html

http://blog.sciencenet.cn/blog-2277-904748.html

http://blog.sciencenet.cn/blog-2277-904762.html

实践检验将在几年内得出结论。

http://blog.sciencenet.cn/blog-2277-827971.html

http://blog.sciencenet.cn/blog-2277-904748.html

http://blog.sciencenet.cn/blog-2277-905139.html

2014-2016年月亮赤纬角极小值减小潮汐南北震荡幅度,导致高温、干旱、雾霾和强震,2013年的前兆值得关注。

2023-2025年月亮赤纬角极大值增大潮汐南北震荡幅度,导致低温和强震,2000-2030年拉马德雷冷位相增强制冷作用。

http://blog.sciencenet.cn/blog-2277-779229.html

根据以往记录,21世纪太阳黑子超长极小期过程还将持续30年以上。2000-2030年为拉马德雷冷位相,百年极寒有可能发生,但规模较小,变冷规模要小于道尔顿极小期。我们称之为“次小冰期”。综合因素表明,2020年气候变冷将达到高潮(2023-2025年月亮赤纬角最大值时期进入峰值)。

http://blog.sciencenet.cn/blog-2277-972713.html

http://blog.sciencenet.cn/blog-2277-976487.html

http://blog.sciencenet.cn/blog-2277-1176025.html


1889年至2012年全球8.5级以上地震数据的特征分析


根据1889年以来的地震数据统计,全球大于等于8.5级的地震共22次。在1889-1924年拉马德雷冷位相发生6次,在1925-1945年拉马德雷暖位相发生1次;在1946-1977年拉马德雷冷位相发生11次,在1978-1999年拉马德雷暖位相发生0次;在2000-2012年拉马德雷冷位相已发生6次。规律表明,拉马德雷冷位相时期是全球强震的集中爆发时期和低温期。2000年进入了拉马德雷冷位相时期,2000-2035年是全球强震爆发时期。

1  1890年以来特大地震活跃期和拉马德雷(PDO)冷位相对应关系

年代

8.5级以上地震次数

9级以上

地震次数

PDO时间位相

气候冷暖

 地震

全球

中国

1890-1924

64

1

0

1890-1924

低温期

 活跃期

1925-1945

11

0

0

1925-1946

温暖期


1946-1977

117

1

4

1957-1976

低温期

 活跃期

1978-1999

00

0

0

1977-1999

温暖期


2000-2012

66

0

2

2000-2030

低温期?

 活跃期

特大地震为Ms 8.5级以上强震,括号内为国外数据,?表示预测

 http://blog.sciencenet.cn/blog-2277-970569.html

 

我们多次强调:特大地震集中发生在拉马德雷冷位相前17年,这只是前一轮特大地震活跃期的统计结果,没有从理论上给出说明。

 

本轮特大地震活跃期将延长至2025

 

最近的统计分析表明,特大地震活跃期是拉马德雷冷位相和月亮赤纬角周期叠加的结果,一般发生在拉马德雷冷位相时期的前19年,从月亮赤纬角最大值时期开始,在月亮赤纬角最小值时期结束,历时18.6年,约为19年(见表2)。

 

2 1890-2012年全球8.5级以上地震与拉马德雷冷位相的对应性

 

序号

地震时间

地震地点

震级

拉马德雷

月亮赤纬角


1895-1897



冷位相

最大值

1

1896-06-15

日本

8.5

冷位相



1904-1906



冷位相

最小值

2

1906-01-31

厄瓜多尔

8.8

冷位相



1913-1915



冷位相

最大值


1922-1924



冷位相

最小值

3

1922-11-11

智利

8.5

冷位相


4

1923-02-03

俄罗斯堪察加半岛

8.5

冷位相



1931-1932



暖位相

最大值

5

1938-02-01

印尼班大海

8.5

暖位相



1940-1942



暖位相

最小值


1950-1952



冷位相

最大值

6

1950-08-15

中国西藏

8.6

冷位相

最大值

7

1952-11-04

俄罗斯堪察加半岛

9.0

冷位相

最大值

8

1957-03-09

阿拉斯加

8.6

冷位相



1959-1960



冷位相

最小值

9

1960-05-22

智利

9.5

冷位相

最小值

10

1963-10-13

俄罗斯库页岛

8.5

冷位相


11

1964-03-27

阿拉斯加威廉王子湾

9.2

冷位相


12

1965-02-04

阿拉斯加

8.7

冷位相



1968-1970



冷位相

最大值


1977-1979



暖位相

最小值


1986-1988



暖位相

最大值


1995-1997



暖位相

最小值


2005-2007



冷位相

最大值

13

2004-12-26

印尼苏门答腊

9.1

冷位相


14

2005-03-28

印尼苏门答腊

8.6

冷位相

最大值

15

2007-09-12

印尼苏门答腊

8.5

冷位相

最大值

16

2010-02-27

智利

8.8

冷位相


17

2011-03-11

日本

9.0

冷位相


18

2012-04-11

印尼苏门答腊

8.6

冷位相



2014-2016

2023-2025

2032-2034

2041-2043

未发生

发生概率最大

发生概率较大

发生概率较小


冷位相

冷位相

冷位相

暖位相

最小值

最大值

最小值

最大值


参考文献

杨冬红杨学祥地球自转速度变化规律的研究和计算模型地球物理学进展, 2013281):58-70

曾佐勋,刘根深,李献瑞,贺赤诚,杨学祥,杨冬红。鲁甸地震(Ms6.5)临震预测、中期预测及中地壳流变结构。DOI:10.3799/dqkx.2014.159。地球科学。2014,3912):1751-1762.

https://blog.sciencenet.cn/blog-2277-993957.html

https://blog.sciencenet.cn/blog-2277-1319404.html

https://blog.sciencenet.cn/blog-2277-1321450.html




https://blog.sciencenet.cn/blog-2277-1368963.html

上一篇:12月24日早报:厄尔尼诺指数进入上升区间与23-24日强潮汐组合对应
下一篇:12月24日午报:厄尔尼诺指数进入上升区间与23-24日强潮汐组合对应
收藏 IP: 103.57.12.*| 热度|

1 周少祥

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 17:05

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部