全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

超级热浪事件:特大地震、火山频发、“热穹顶”和全球变暖协同所致

已有 8243 次阅读 2022-7-23 03:42 |个人分类:全球变化|系统分类:论文交流

                超级热浪事件:特大地震、火山频发、“热穹顶”和全球变暖协同所致

                                                      吉林大学:杨学祥,杨冬红

      相关报道

      超级热浪事件:“热穹顶”和全球变暖协同所致

作者:高雅丽 来源:中国科学报 发布时间:2022/7/22 20:52:13

2022年北半球入夏以来,包括美国、欧洲乃至我国境内,接连出现了罕见热浪。7月22日,中国科学院南海海洋研究所研究员王春在团队在《大气科学进展》上发表研究文章,对2021年6月底至7月初北美西部发生的一次超级热浪事件进行了分析。研究指出,大气环流异常引起的局地“热穹顶”和全球变暖对本次超级热浪事件均有重要的贡献。这项研究对于热浪事件的形成与发展,以及了解未来情景下热浪事件的变化具有重要的学术价值。

2021年6月底至7月初,北美西部气温打破了多地有观测以来的历史纪录,加拿大的英属哥伦比亚省利顿镇甚至出现了49.5℃的历史最高气温。此次“前所未有”的超级热浪事件导致了数百人死亡,造成了沿海生物的大量死亡,引发了可怕的森林野火。

实际上,近半个世纪以来,全球地表温度表现出前所未有的强烈增暖。政府间气候变化专门委员会最新发布的第六次气候变化评估报告(IPCC AR6)指出,相对于1850-1900年,2001-2020年平均全球地表温度升高了0.99(0.84-1.10)℃。与此同时,区域气候也发生了一定程度的改变,特别是极端天气发生频率显著增加,强度也不断提高,对生态系统、人类生活和社会经济都产生了严重影响。

王春在团队利用逐日的大气再分析资料,定义了与此次北美超级热浪事件发生发展相关的大气环流异常模态,重建了本次超级浪事件发演变过程,确定了大气环流异常信号的来源。研究发现,引发“热穹顶”的异常大气环流信号则主要来自于北太平洋和北极,并与北极极涡的异常活动有关。

“热穹顶是指高层大气热高压在一段时间内停滞不动,高压与附近低压之间的大气环流形成了稳定的‘Ω’型,高压像个罩子一样把热空气盖在热浪发生区域,同时阻止了冷空气进入,使热穹顶里的温度越来越高,从而引发热浪或超级热浪事件。”王春在表示。

实际的气候变化可以由自然内部变率,自然外强迫(例如太阳、火山)和人为外强迫三部分引起。除了异常大气环流这一自然内部变率以外,研究发现人为外强迫对这次北美热浪事件也具有重要影响。王春在指出,温室气体排放为主的人类活动不仅是逐日气温增加的主要原因,也会大幅度增加类似热浪事件发生的概率。

根据第六次国际耦合模式比较计划(CMIP6)中的检测归因模式比较计划(DAMIP),研究团队估算了中等排放情景(SSP245)下,2021-2100年北美西部发生类似本次热浪事件的概率。2021-2100年北美西部地表大气温度的概率密度分布曲线将整体向更高的温度移动,这也将导致北美西部发生类似本次热浪事件的概率从1.2%提高到32.18%。

“这也进一步说明,如果不采取适当的减排措施,以往百年一遇的超级热浪事件在未来将会变成常态,并将严重威胁人类健康与生态平衡。”王春在强调。

论文相关链接:https://doi.org/10.1007/s00376-022-2078-2.

https://news.sciencenet.cn/htmlnews/2022/7/483163.shtm

       深入研究:北半球多地刷新高温极值

    “两年前,英国天气研究人员进行了一个有趣的预测:2050年的英国天气会是什么样?结果,预测的结果准确地变成了现实——只是提前了28年。”美国有线电视新闻网(CNN)如此形容当前席卷英国的空前热浪所带来的巨大冲击。

    英国天空新闻网18日称,英国已发布史上首次极端高温红色警报,英国部分地区在18日和19日的最高气温将突破40摄氏度。英国最大空军基地、皇家布里兹诺顿空军基地的沥青跑道也在高温下融化了,不得不停止飞行活动。甚至连铁轨在高温下也发生扭曲,英国整个铁路网已从18日中午开始实施限速。

    英国气象局国家气候信息中心负责人马克·麦卡锡表示,来自北半球高海拔地区从东向西流动的快速气流将欧洲和北美两块大陆的热浪连接在一起。除了英国外,欧洲大陆同样面临空前的高温炙烤。热空气此前在北非上空积聚,然后向北进入西班牙。高温气团急速放大后涌入法国和中欧,以葡萄牙西部为中心的持续低压区帮助热空气沿着逆时针气流向北移动。

    CNN称,受此影响,法国北部和中部的最高气温可能会达到40摄氏度左右的峰值,预计德国西部也会出现类似高温。报道强调,欧洲城市在很大程度上没有为极端高温做好准备。受“热岛效应”影响,城市居民的处境可能特别危险,因为城区有大量的沥青、建筑物和高速公路,它们吸收太阳能然后辐射更多热量,放大了热浪危害。西班牙和葡萄牙已有超过1100人因高温死亡。

    北美大陆同样遭遇了罕见的高温热浪。CNN称,本周美国南部和东部地区的上百处监测站可能都会刷新高温纪录。美国中西部和南部的气温将攀升至危险的高温水平,之后极端高温将沿着墨西哥湾沿岸向西蔓延到得克萨斯州。美国《纽约时报》称,美国近20%的人口将经历超过100华氏度(约37.8摄氏度)的高温。包括明尼阿波利斯、芝加哥、纳什维尔、孟菲斯、达拉斯、新奥尔良和亚特兰大在内的许多大城市的气温可能接近或高于100华氏度。

    中国中央气象台19日也通报称,进入7月以来,随着西太平洋副热带高压不断西伸加强,在大气晴空辐射和下沉增温等因素的影响下,中国南方地区出现大范围的持续高温天气,多地最高气温达到或突破历史极值。预计从21日起,中国南方高温天气将再度发展,随后副高还将与伊朗高压打通,这意味着副高十分强盛。7月21日至7月底,四川盆地、江汉、江淮、江南、华南及新疆南疆盆地、内蒙古西部等地又将出现大范围35摄氏度以上的持续高温天气,其中浙江、福建及南疆盆地、内蒙古西部等地最高气温将超过40摄氏度。

      关注西北太平洋的热异常

      我们在2022年7月12日指出,南极半岛海冰增大,增强秘鲁寒流,导致厄尔尼诺指数下降;7月12-13日强潮汐组合导致厄尔尼诺指数上升;两者的拉锯战已经开始。西北太平洋异常高温值得关注。这一异常一直持续到7月18日,愈演愈烈。

2020-07-09海温.png

2022-07-10海温.png

图1 南极海冰增加趋势:2022年7月9-10日(白色为海冰,红色为热异常)南极半岛海冰比较。南极半岛海冰增大,增强秘鲁寒流,导致厄尔尼诺指数下降;7月12-13日强潮汐组合导致厄尔尼诺指数上升;两者的拉锯战已经开始。西北太平洋异常高温值得关注。

https://blog.sciencenet.cn/blog-2277-1346931.html

2022-07-17海温.png

2022-07-18海温.png

图2 南极海冰增加趋势:2022年7月17-18日(白色为海冰,红色为热异常)南极半岛海冰比较。7-9月南极半岛海冰增大,增强秘鲁寒流,导致厄尔尼诺指数下降;7月19-20日弱潮汐组合导致厄尔尼诺指数下降;两者叠加加快厄尔尼诺指数的下降速度。西北太平洋异常高温值得关注。

https://blog.sciencenet.cn/blog-2277-1348126.html

       2022年6月以来,热浪侵袭北半球多个国家。英国、法国和韩国等发布了高温预警,日本和美国多地高温破纪录。专家将北半球今夏的高温“炙烤”模式归因于气候变化,并提醒公众加强自我防护。

       原因:气候变化还是温室气体排放?温室气体难以解释

       英国气象局科研人员指出,气候变化在全球范围内引发了前所未有的极端天气事件。英国东英吉利大学气候变化学教授科琳娜·勒凯雷16日接受新华社记者采访时说,气候变化导致全球极端高温天气增多,气候变化的速度比人类社会的适应性行动还快。

       世界气象组织认为,受气候变化影响,预计未来极端高温将出现得更频繁、更强烈。该组织发言人纳利斯之前表示,如果温室气体排放继续上升,全球变暖幅度将会更大,目前所经历的只是“未来的预兆”。

       联合国政府间气候变化专门委员会(IPCC)此前发布的评估报告指出,最近50年全球变暖正以过去2000年以来前所未有的速度发生,气候系统不稳定加剧。

       温室气体的排放是一个平稳缓慢的过程,可以导致全球气温的缓慢上升,不会触发气候高温突变,更何况新冠疫情最严重的国家在2020-2022年期间温室排放明显减少,难以解释今年的北半球高温突变。

       2020-12-12 18:13中国科学院微生物研究所发文指出,据联合早报消息,全球碳计划组织(GCP)与英国东英吉利大学及埃克塞特大学的一项最新研究显示,由于新冠疫情对经济活动的限制,今年全球温室气体排放量较2019年减少了约24亿吨,降幅达7%,为有记录以来的最大年度降幅。

      据法新社报道,全球温室气体排放量在一年内减少24亿吨的产量大大多于以往的年度最高纪录,例如第二次世界大战结束时的减少量为9亿吨,或在金融危机最严重的2009年减少为5亿吨。

       该报告称,今年4月疫情封锁的高峰时期,全球日均碳排放量下降了17%,但自那以来已经大幅回升,并再度接近2019年的水平。

       报告称,美国今年的碳排放量减少了12%,降幅最大,其次是欧盟,减少了11%。由于中国在控制疫情后推动了经济复苏,其排放量可能会在2020年下降幅度仅为1.7%。

https://baijiahao.baidu.com/s?id=1685866968473258844

      “臭氧洞漏能效应”和“地磁层漏能效应” 

       我们在1999年撰文提出,到达地球的太阳辐射能大约有2%被平流层的臭氧吸收,7%被电离层吸收。当黑子活动高峰发生太阳风暴时,会大量破坏南极臭氧,随之产生“臭氧洞漏能效应”和“地磁层漏能效应”,使被地磁层和臭氧层阻隔的9%的太阳能由平流层进入对流层,导致南极平流层变冷对流层变暖。收缩的平流层自转变快,膨胀的对流层自转变慢,这是赤道高空风产生的一个原因。

       正X射线,γ射线和紫外线,大约占太阳辐射光谱总能量的9%.在80~400km高度范围的电离层,γ射线和X射线被N2和O2/O3所吸收,在15~55km高度的臭氧层,99%的紫外线被O3所吸收.即在地球磁层、大气层和臭氧层被破坏的时候,到达生物圈的太阳辐射能将增大9%,造成地表温度的大幅度波动.与此同时,到达地表的γ射线、X射线和过量紫外线将造成大规模的生物灭绝.这就是臭氧洞漏能效应.

http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGDW199910001191.htm

https://www.doc88.com/p-4317663607230.html

https://www.docin.com/p-344676587.html

       2020年两极臭氧洞形成原因:极地涡旋是元凶

       2020年春季北极上空的臭氧洞规模达到100多万平方公里,成为史上最大的北极臭氧洞。这次臭氧洞的产生主要是源自平流层极区异常强大的极涡,极涡隔绝了南北热量和空气交换,在极区低温环境里形成臭氧洞,随着春末极涡的分裂,臭氧洞也随之消失。

https://www.sohu.com/a/394495866_99907401

       2020南极臭氧洞变大:极地涡旋是元凶,恢复之路任重而道远。

       当平流层温度变低时,空洞内的臭氧浓度就会减少,特别是在低于–78°C的温度下形成平流层云时,这些高空云在太阳辐射的情况下有助于增加氟氯烃等化学物质的化学反应,从而导致臭氧消耗,进一步减少臭氧层。最近的极地涡旋使地球大气层保持极冷,从而形成了极地平流层云。在过去的几周中,阳光再次回到南极,该地区的臭氧层持续消耗。

       尽管2020年的臭氧空洞并不是有记录以来的最高值,小于2000年的2990万平方公里,但其意义仍然重大,洞口也是近年来最深的洞之一。研究人员表示,2020年的这一事件是由强烈的极地涡旋驱动的,不会成为永久状态,而2019年创纪录的异常小而短暂的臭氧空洞则是由于特殊的高温气象条件造成的。

https://www.163.com/dy/article/FSHKO7IV0512GVI0.html

      臭氧洞的存在和扩大与地球公转轨道有关 

南极臭氧洞(Antarctic ozone hole)是指南极上空出现的臭氧层空洞,由英国南极考察科学家在1985年首次报道发现。这里所指的空洞,并不是说整个臭氧层消失了,而是指大气中的臭氧含量减小到一定程度。

每年的8月下旬至9月下旬,在20千米高度的南极大陆上空,臭氧总量开始减少,10月初出现最大空洞,面积达2000多万平方千米,覆盖整个南极大陆及南美的南端,11月份臭氧才重新增加,空洞消失。

1999年我们就撰文就指出,造成南极上空臭氧空洞的罪魁祸首是太阳风,而不是通常所认为人类使用的氟利昂。这一观点发表在今年5月份出版的《科学美国人》杂志中文版上。杨教授在论文中指出,有3个因素结合起来使南极臭氧层出现空洞:太阳风的压力使地球南极上空大气层变薄;处于开裂期的地球南半球由于火山爆发释放出大量有害气体破坏臭氧层;太阳高能粒子进入地球大气层后消耗了两极臭氧。

      根据地球公转轨道,秋分(922-24日)到冬至(1221-23日),南极的极昼使太阳辐射对南极最强,产生南极的臭氧洞(或臭氧稀薄区);春分(320-22日)到夏至(621-22日,北极的极昼使太阳对北极辐射最强,易产生北极的臭氧洞(或臭氧稀薄区)。其中,2010年冰岛火山的异常喷发规模最大,火山灰集中在北极,降温和破坏臭氧的作用值得关注。由于地球近日点在13日或4日,远日点在72日或3日,这是南极比北极更容易出现臭氧洞的原因,也是臭氧洞季节性变化的原因。臭氧洞应该周期性地在南北两极轮流出现

     事实上,北半球也可能出现臭氧洞事件,历史上,北极在1997年、2011年和2020年都出现了较大规模的臭氧洞。

  地球南北极都出现过臭氧洞,证实了我们的理论。彗星的轨道是一个偏心率很大的椭圆,受太阳风压力作用,在近日点彗尾最长,在远日点彗尾最短。同样,地球轨道也是一个椭圆,在近日点气尾最长,在远日点气尾最短。这是南极臭氧洞比北极臭氧洞面积大,存在时间长的原因(见图1)。 

      两极臭氧洞首先是自然的产物。极夜和极昼的交替,极涡和低温条件,火山灰向极地的集中,臭氧洞在南北两极的轮换,都是自然规律运作的结果,远非人力所能控制。北半球大陆集中,人口稠密,如果《蒙特利尔议定书》的努力只是将臭氧洞从南极迁移到北极,这项成功究竟是福音还是灾难?

       2011年北极臭氧减少的背景是:太阳活动由2009年的谷值向2013年的峰值过渡,太阳高能粒子活动逐渐增强;2011年1-3月北半球受到低温暴雪的袭击,低温和北极涛动强烈;2010年3月爆发的冰岛火山喷发,巨量的火山灰不仅降低了气温,而且破坏了臭氧。

       北极臭氧洞在氟利昂停滞消耗臭氧的条件下产生,自然规律再次出人意料地证实了自身的存在,人类的努力如猴子捞月亮,劳而无功,甚至帮了个倒忙。例如,2020年3月北极出现臭氧洞,2020年9月南极出现臭氧洞,通过它们进入两极的太阳高能粒子,阻止和减弱了新冠病毒的爆发和发展。

https://blog.sciencenet.cn/blog-2277-1332162.html


太阳风压缩大气层形成臭氧洞和气尾.png 


图1 太阳风压缩大气层背光流动形成两极地区极昼时臭氧洞(或臭氧稀薄区)和极夜时气尾

  太阳风压缩大气层背光流动形成臭氧洞,由于科里奥利的作用,背光流动的大气将在极昼区产生极地涡旋,形成阻止含臭氧的大气进入极区的特殊表象。极涡的低压中心进一步加剧臭氧洞的扩大。

       2022年3月,两极地区同时异常增温只能用两极臭氧洞异常扩大和臭氧洞漏能效应来解释。

       1998年20世纪最热纪录的条件:1997-1998年20世纪最强厄尔尼诺事件,1995-1997年月亮赤纬角最小值,1977-1998年之间没有发生8.5级以上特大地震,1998年南极臭氧洞面积排名第2,1997年北极出现臭氧洞。

        2014年、2015年和2016年连续三年最热纪录的条件:2014-2016年连续三年最强厄尔尼诺事件,2014-2016年月亮赤纬角最小值,2013-2016年年之间没有发生8.5级以上特大地震,2015年南极臭氧洞面积排名第4。

        2022年3月19日地球两极正在经历异常的极端高温的条件:2020年9月南极出现臭氧洞(面积排序12位),2020年3月北极出现最大臭氧洞。

https://blog.sciencenet.cn/blog-2277-1331721.html    

       地下热能喷发带来的高温异常

       2010年3月20日,冰岛火山喷发,其威力影响到全球,这是二战以来对贸易和旅游影响最深远的一次事件。由于火山喷发,其上空形成了大量的火山灰,弥漫在整个北大西洋地区,并开始抵达欧洲大陆。冰岛地方开始疏散附近居民,以保证安全。火山爆发使冰岛成为世界的焦点,人们开始关注冰岛的动态。

       2021年3月19日,一声巨响再次让冰岛的这个春天吸引了全球的目光。随着熔岩在雷克雅内斯半岛 (Reykjanes Peninsula)上几座盾形火山之一的法格拉达尔 (Fagradalsfjall)附近冲破地表,一场喷发正式开始。喷涌的熔岩、浓重的白烟,颜色诡异的云层,陆续飞来的无人机记录下一帧帧触目惊心的画面。

      近日(2022年7月),科学家们在南极洲观看到了一种罕见的现象。本应在隆冬时节一片黑暗的南极洲上空,却被耀眼的粉红色霞光笼罩。造成这种现象的,居然与发生在今年一月份、距离南极洲7000公里的汤加火山喷发有关。

       汤加火山于1月15日喷发,产生了一股垂直羽流,延伸至地球表面50公里以上高空。在喷发后的12个小时里,水和火山灰释放的热量是地球重力波的最大来源。火山喷发还产生了类似波纹的重力波。卫星观测显示,这种重力波延伸到整个太平洋盆地。

       火山喷发还在地球大气层中引发了大气波,其围绕地球回荡了至少6次,并达到理论上的最大速度——在地球大气层中看到的最快速度,即320米/秒。

       论文作者称,一个单一事件产生了如此大的影响,这在观测记录中是独一无二的,这将有助于科学家改进未来的大气和气候模型。

      “这是一次真正的大喷发,是迄今为止观察到的一次真正独特的喷发。”论文主要作者、巴斯大学空间大气和海洋科学中心的Corwin Wright说,“我们从未见过大气波以这样的速度在全世界传播——传播速度非常接近理论极限。这次喷发是一次惊人的自然实验,我们收集到的数据将增强人们对大气的理解,并帮助改进大气和气候模型。”

      “我们的研究很好地展示了全球波浪是如何被火山喷发期间蒸发的大量海水驱动的。然而,我的直觉是,这次喷发还会产生更多的影响。”论文作者之一、牛津大学物理系的Scott Osprey说,“随着大量水蒸气在平流层中扩散,人们将关注南极臭氧空洞及其在春季的严重程度。”

https://news.sciencenet.cn/htmlnews/2022/7/482359.shtm

      我们在2018年11月17日指出,足够规模的火山喷发和地震活动也会产生相应的球面大气对流,影响大气对流的正常结构,形成相应的灾害链。汤加的球面对称点为西非的加纳,是能量的集中地,但是,由太阳能量形成的大气对流,火山灰一般在低纬度升起,在两极落下,与半球面对流模型完全一致。这是南极洲红光形成的原因,可导致9月末南极臭氧洞异常扩大。

http://blog.sciencenet.cn/blog-2277-1146733.html

http://blog.sciencenet.cn/blog-2277-1148356.html

https://blog.sciencenet.cn/blog-2277-1293992.html 

南极洲红光是南极臭氧洞异常扩大的前兆。

汤加火山在2020年1月15日喷发,会增强2022年3月春分时北极臭氧低值区的“臭氧洞漏能效应”,是今年异常高温的重要原因。

球面大气、海洋和地壳传递能量的方式和特征 

目前有关大气、海洋和地壳的能量传递模型都是建立在平面模型之上,事实上,地球是一个球体,地球表面的大气、海洋和固体地壳都是是一个球面,球面模型能更准确地反映暴风雪、海啸和地震远距离传播的方式和特征。

研究表明,点源激发的球面大气、海洋和固体地壳震荡在传播过程中的能量密度变化,与单位时间扩散的大圆周长C成反比。设总能量为Q,能量密度为δ,穿过的面积为S=Cl = 2πRlsinφ,l为单位弧长,R为地球半径,φ为圆心角。则有

δ= Q/S = Q/ (Cl) = Q/ (2πRlsinφ)                               (1)

其中,圆心角φ为点源和地心连线与大圆上任一点和地心连线的夹角。同样,在球壳中点源喷射造成的球面对流,也会有扩散、集中、返回的震荡过程(见图5)。


图1  点源激发的大气流动、海洋震荡和地震波传播在球面上的能量密度变化(杨冬红,2009)

由(1)式可知,在φ= 0和φπ时,能量密度δ为无穷大,在φπ/2时,即经过地表最大圆时,能量密度δ最小。这就是说,假定大气流动总能量在传播中无损耗,点源及其地心对称点处的能量密度最大(杨冬红, 2009)。

这一模型既可以解释北极大气和海洋等位面下降导致北半球低温暴雪频发和南极大陆沿海异常变暖(通过海冰气候开关效应阻止拉尼娜的发生,使拉尼娜可能夭折),也可以解释震洪链、旱涝链和高温暴雨链的发生原因。同样,这一模型可以解释海啸波动为什么在地震球面对称点的能量最大。

2003122322时左右,“重庆开县井喷”发生,历时84小时,大约17.521百万立方米石油天然气喷入大气中;2004925日,开县惨遭200年一遇特大暴雨洪灾,部分地区为500年一遇。2008512日四川汶川发生级地震;200974日地震灾区遭遇“7.14”暴雨洪涝灾害。2013420日四川雅安发生7级地震;77日晚至10日,强降雨侵袭四川,成都、雅安、乐山、眉山、德阳、绵阳大部及广元市西部出现了区域性暴雨,都江堰气象站日降水量已超过有记录以来的最大值。20138614时,在全国2418个国家级自动监测站中,高温排行前十名全部超过40℃,其中,浙江8个地区榜上有名,浙江余姚的气温更是达到了42.1℃;2013109日),在福建登陆的台风“菲特”,却让浙江东部的余姚受遭受了百年一遇的降雨,70%以上城区受淹,主城区城市交通瘫痪。受灾人口超过83万人。点源喷发导致的大气环流是合理的数学模型,能量在喷发点及其球对称点达到最大值(见图2)。

地球赤道圈的周长为4万公里,地震对称点相距2万公里。北纬49°为美国、加拿大国境线,是卡斯卡迪亚俯冲带的中心。其球面对称点在南纬49°的大西洋上。由于大陆和海岛的阻隔,地震引发的海啸被日本列岛和南太平洋诸岛阻挡,形成了跨越千里的特大灾害事件。日本在卡斯卡迪亚俯冲带的同一半球内,海啸能量和高度不是最大的,在球面波的运动中处于能量的扩散状态,并在1万公里处达到最小值。图展示的7500-8000公里距离表明,本次海啸的规模远远小于1960年的智利地震。

1960522日,智利中部太平洋深海沟发生里氏8.3级大地震,产生最大浪高25米的大海啸,海浪以640千米/时的速度横扫太平洋,造成1万多人遇难,沉船几千艘,这是世界上影响范围最广的地震海啸之一。日本也位列其中。因为智利和日本分属于两个半球,智利地震中心位于3..2°S76.6°W,日本东京位于北纬35°69′—东经139°69′。两者接近为球面对称点,并有连续的海洋链接,达到最远距离(大约为日本到北美地震中心距离的2倍,15000-16000公里)

2018年11月8日以来的加州山火可以作为一个典型的点源能量喷发,所形成的大气对流如图2a。山火热流上升到高层,并流向球面对称点,变冷后在低层流回美国,导致极地冷空气趁势而入,冷暖空气交汇,形成美国东北部的暴风雪。加州山火是这场气象灾害产生的动力。这样的大气对流也可以根据能量大小,形成图2b的半球循环。


点源喷发在全球壳a和半球壳b中的对流(杨冬红,2009

 

干旱、山火、暴雪、寒流,美国灾难源于加州地下能量释放,由此引发的点源能量喷发模式即将进入能量释放高潮。

http://blog.sciencenet.cn/blog-2277-1164034.html 

在地球自转的影响下,点源喷发不仅能造成球面大气对流,而且能产生相应的大气蜗旋,从而干扰正常的大气对流,形成极端事件和极端灾害。特别应该指出的是,加州多次发生的山火,其主要原因是地下能量的释放,山火的热能又加大了点源喷发的强度,扩大了点源喷发的全球大气对流规模,分裂了极地涡旋,干扰了大气正常流动,形成以美国为中心的冷暖变化对流新体系,导致美国极端灾害恶性循环,形成超级灾害链。这就是不稳定系统的蝴蝶效应:微力引起的动态平衡破坏,使能量向特定方向集中,形成难以估量和预计的超级灾害链。这一过程,我们称之为“微力迭代效应”。

我们已多次发布相应的警告。

http://wap.sciencenet.cn/blog-2277-1164162.html

http://blog.sciencenet.cn/blog-2277-1109481.html

http://blog.sciencenet.cn/blog-2277-1161155.html

http://blog.sciencenet.cn/blog-2277-972518.html

足够规模的火山喷发和地震活动也会产生相应的球面大气对流,影响大气对流的正常结构,形成相应的灾害链。

http://blog.sciencenet.cn/blog-2277-1146733.html

http://blog.sciencenet.cn/blog-2277-1148356.html

https://blog.sciencenet.cn/blog-2277-1293992.html 

https://news.sciencenet.cn/htmlnews/2022/7/482359.shtm

https://blog.sciencenet.cn/blog-2277-1347559.html

2004-2012年6次8.5级以上特大地震敲响地球内能释放警钟

特大地震的轨迹:能量积累、前兆和爆发

全球869-20128.5级以上地震在14世纪发生1次,16世纪发生1次,17世纪发生4次,18世纪9次,19世纪发生7次,20世纪发生10次,21世纪发生6次。小冰期高潮的17世纪地震进入活跃期,温暖期的20-21世纪数量激增,

我们在2019年12月3日指出,全球8.5级以上地震有三大统计特征 

全球8.5级以上地震第一个统计特征是,地震的发生地点具有明显的洲际差别:只发生在美洲和亚洲(见表1-2)。美洲、亚洲与欧洲、非洲、澳洲的最大差别是具有高耸的山脉和广袤的山地冰川。

全球8.5级以上地震第二个统计特征是,全球8.5级以上地震的发生时间和频率具有明显的波动性,其规律就是集中发生在拉马德雷冷位相时期。这为我们预防地震和预测地震提供了极为重要的理论根据。这也否定了特大地震发生的随机特性,表明特大地震具有明显的周期性(见表1-2)。2000-2030年拉马德雷冷位相已过去20年,发生了68.5级以上地震。2020-2030年的后十年值得警惕。

全球8.5级以上地震第三个统计特征是,海岛的9级地震发生后,8.5级以上地震连续发生,这对日本地震有参考意义。2004200520072012年的4年中,印尼苏门答腊岛发生了48.5级以上地震;阿拉斯加半岛在195719641965年也发生了3次强震(见表1)。日本的后续地震不得不防。

事实上,2010年智利发生8.8级地震,2011年日本发生9级地震,2012年印尼发生8.6级地震。

历史数据表明,8.5级以上特大地震总是在亚洲的日本、印尼苏门答腊、俄国的勘察加、中国和美洲的智利、美国特别是阿拉斯加、秘鲁、厄瓜多尔等地反复发生。其中,智利12次,印尼苏门答腊6次,日本6次,美国4次,频率最大。

我们在2008年和2011年给出的特大地震路线图

青藏高原是世界屋脊,近30年冰盖融化显著,自然是地壳均衡最强烈的地区。中国地震后,陆海地壳的负荷在内陆地区得到大致调整,接下来就是在陆海连接处的岛弧发生强震。岛弧强震是全球范围的,遍布东西太平洋和印度洋。这就完成了一个循环。

如果上述规律成立,下一个8级以上强震就必定发生在陆海连接处,按路线图,危险性的排列为:日本、印尼、堪察加半岛附近高纬度地区、南北美太平洋沿海地区。其中,日本、俄罗斯和印尼发生强震的风险最大,其后是南北美太平洋沿海地区。

事实上,2010年智利发生8.8级地震,2011年日本发生9级地震,2012年印尼发生8.6级地震。

http://blog.sciencenet.cn/blog-2277-489273.html

http://blog.sciencenet.cn/blog-2277-27387.html 

大面积长时间的异常高温干旱和山火是特大地震发生的前兆

特大地震需要的能量巨大,应该有一个大面积长时间的能量积累过程:高温、干旱和山火。

著名气象学家汤懋苍的地热涡理论曾受到国际气象界的关注,在富集地热的地区,有地下水源则含水热气生成巨量云层,降雨充沛,如雅鲁藏布江大峡谷的墨脱地区;缺水则干燥热气蒸腾,烘烤尽土壤水分,造成赤地千里,其前提条件是长期无降水,所形成的干旱称为构造干旱。

https://blog.sciencenet.cn/blog-2277-665141.html

耿庆国提出了旱震理论:6级以上大地震的震中区,震前1――3年半时间内往往是旱区。旱区面积随震级大小而增减。在旱后第三年发震时,震级要比旱后第一年内发震增大半级。

https://blog.sciencenet.cn/blog-2277-1325890.html

澳大利亚山火由高温干旱所致

201978日开始,澳大利新南威尔士州爆发了山火,由于当地天气的炎热,加上澳大利亚政府的救援不力,很快整个澳洲燃起了大火。山火像恶魔一样吞噬着澳大利亚的森林和草地,一直持续了整整7个月。

在这场大火中,大约400公顷的土地被烧毁,十亿野生动物死于大火,连澳洲的考拉也死了百分之三十,此外,鸭嘴兽直接成为了濒危动物。在七个月的燃烧期中,澳大利亚有33个人死于大火。而更为可怕的是,这场大火所造成的生态危害。

从小的方面来说,澳大利亚当地的物种生态得到大肆的毁灭,势必会造成当地各种的生态负面影响。一米长的蝙蝠开始进入城市,堪培拉、墨尔本的天空被大火染成了红色,城市中充满了灰烟。

最让人担忧的是,南极洲和澳洲的距离十分的近,七个月的大火,让本来就温室效应的世界气候变得更加的高温。常年堆积冰川的南极洲由于全球变暖,使得大量的冰川融化,冻土苏醒。全球的水平面急剧的增长,据科学家研究发现,在南极洲发现了很多的远古病毒。这些病毒都是被封印进去的,如今气候变暖,自然也是开始慢慢的苏醒。

https://new.qq.com/omn/20200104/20200104A056FD00.html

科学家表示,20217月是2003年开始有卫星记录以来全球山火最严重的7月。在北美洲、西伯利亚、非洲和欧洲南部,山火持续肆虐。

20217月全球各地的山火共释放出343兆吨碳,比2014年出现的上个7月全球峰值高出约五分之一。

欧盟哥白尼大气监测局资深科学家马克·帕林顿说:2003年我们开始有记录以来,今年7月的(山火碳排放)全球总量是最高的。

https://new.qq.com/rain/a/20210808A07C9O00 

全球变暖的主要原因 

目前科学界普遍公认温室效应是全球变暖的主要原因,但是温室气体集中在大气是由何种因素来控制?

事实上,太阳光合作用将太阳能量和二氧化碳贮存在草木、甲烷和化石燃料矿藏之中,是一个能量积蓄过程。超级火山喷发点燃草木、甲烷和化石燃料,向大气释放出积累的太阳能量和温室气体,导致全球变暖和生物灭绝(高温型);酸雨清洗大陆,将温室气体带入海洋,导致海洋酸化和岩石圈碳酸钙积累,引发大气温室气体降低、生物灭绝(低温型)和气候变冷(参见海底藏冷效应和海底温室气体贮存效应)

因此,长期积累的太阳能量和温室气体的释放(化石燃料矿藏爆燃),超级火山喷发,温室气体集中在大气,是全球变暖的三大主要原因。

https://blog.sciencenet.cn/blog-2277-1311828.html

印度遇122年来最高温!2022极端高温季开始:与特大地震活跃期对应

       中新网2022年1月21日电 据“中央社”报道,日前,印度气象局的研究显示,印度过去19年来气温显著升高,其中2000年是导致气候变暖的转折点,进而引发近年的天灾。如果不控制温室气体排放,印度到2040年将面临灾难性后果。

       印度气象局(IMD)最新《印度2018年气候声明》报告指出,印度近年天然灾害明显增加,包括2018年克勒拉省的洪水及北部出现的沙尘暴,都与2000年以来的气温显著升高有关。印度气象局这份报告把19年来印度气温明显增加及气候变化联系起来,发现印度的变暖趋势与全球变暖模式类似。

       根据世界气象组织(WMO)的《2018年全球气候概况》报告,地表气温从2000年以来出现气温上升最快趋势,20个“最热”的一年都出现在过去22年间。来自印度政府及独立机构的科学家警告,如果不控制温室气体排放,预计到2040年,印度的气温将上升1.5摄氏度,可能影响印度的农业,对沿海地区也将造成危害,且将使一些物种灭绝。

       数据表明,2004-2012年全球进入特大地震活跃期,与2000-2012年全球气温快速上升密切相关。

        2022年4月29日,世界气象组织发文称,酷热正席卷印度和巴基斯坦的大部分地区,影响着这个世界上人口最稠密地区之一的数亿人。

       据世界气象组织,印度气象部门表示,4月28日大部分地区的最高气温达到了43-46摄氏度,这种高温将持续到5月2日。

       巴基斯坦也出现了类似的温度。巴基斯坦气象部门表示,在该国的大部分地区,白天的温度可能比正常温度高5摄氏度至8摄氏度。该部门警告说,在吉尔吉特-巴尔蒂斯坦和开伯尔-普赫图赫瓦的山区,异常的高温会加速冰雪融化,并可能在脆弱地区引发冰湖溃决洪水或山洪暴发。空气质量已经恶化,大片土地面临极度的火灾危险。

       今年,印度出现了有史以来最热的3月,平均最高气温为33.1摄氏度,比长期平均气温高出1.86摄氏度。巴基斯坦也记录了至少60年来最热的3月,许多气象站打破了纪录。 譬如,巴基斯南部城市土尔巴特(Turbat)在2017年5月28日就记录了世界第四高的温度——53.7摄氏度。

       世界气象组织表示,预计21世纪印度季风季节前的热浪频率、持续时间、强度和覆盖面积将大幅增加,而热浪是由高压系统触发的。

       世界气象组织并解释道,在季风季节前,印度和巴基斯坦都经常出现高温,尤其是在5月。但热浪发生在4月的情况,不太常见。

       世界气象组织表示,将印度和巴基斯坦的极端高温仅仅归因于气候变化还为时过早。然而,这与该组织对气候变化的预期是一致的。热浪比过去更频繁、更强烈、开始得更早。

       政府间气候变化专门委员会在其第六次评估报告中说,本世纪南亚的热浪和湿热压力将更加强烈和频繁。印度地球科学部最近发布了一份关于印度气候变化的公开出版物。它用了整整一章来讨论温度变化。

       1951年至2015年期间,印度极端温暖天气的频率增加,在1986年至2015年的近30年期间,变暖趋势加速(高度可信)。自1986年以来,最热的一天、最热的一夜和最冷的一夜都出现了显著的变暖。

       印度季风季节前的热浪频率、持续时间、强度和覆盖面积预计在21世纪将显著增加(高度可信)。

       据第一财经5月1日报道,当地时间30日,印度气象局预测,5月,印度北部和西部地区的气温可能高达50摄氏度,对作物和工业活动产生不利影响,这一读数已经接近印度122年来最高水平了。

https://new.qq.com/rain/a/20220502A0056500

       我们讨论了全球增温与特大地震的对应关系,也讨论了中国增温与8级以上地震对应关系,还讨论了美国高温山火与地下热能的对应关系。

https://blog.sciencenet.cn/blog-2277-1336488.html

https://blog.sciencenet.cn/blog-2277-1336337.html

https://blog.sciencenet.cn/blog-2277-1336236.html

       世界气象组织表示,将印度和巴基斯坦的极端高温仅仅归因于气候变化还为时过早。

       事实上,印度高温与全球特大地震活跃期有很好的对应关系: 1951年至2015年期间,印度极端温暖天气的频率增加,对应1950-1965年特大地震活跃期(对应8.5级特大地震7次)和2004-2012年(对应8.5级特大地震6次)特大地震活跃期;在1986年至2015年的近30年期间,变暖趋势加速(高度可信)。自1986年以来,最热的一天、最热的一夜和最冷的一夜都出现了显著的变暖(对应8.5级特大地震6次,见表1-3)

        显然,1950-1965年特大地震活跃期(对应8.5级特大地震7次)增强了印度的高温发展,也为2004-2012年(对应8.5级特大地震6次)特大地震活跃期积累了能量。

      2022年 4月29日,世界气象组织发文称,酷热正席卷印度和巴基斯坦的大部分地区,影响着这个世界上人口最稠密地区之一的数亿人。

       据世界气象组织,印度气象部门表示,2022年4月28日大部分地区的最高气温达到了43-46摄氏度,这种高温将持续到5月2日。

       巴基斯南部城市土尔巴特(Turbat)在2017年5月28日就记录了世界第四高的温度——53.7摄氏度。

        印度增温过程开始于1951年,即1950年8月15日中国西藏8.6级地震之后,表明此次地震导致青藏高原地震带开裂,大量能量开始释放,导致印度高温开始异常。

        印度高温与全球特大地震活跃期有很好的对应关系: 1951年至2015年期间,印度极端温暖天气的频率增加,对应1950-1965年特大地震活跃期(对应8.5级特大地震7次)和2004-2012年(对应8.5级特大地震6次)特大地震活跃期;在1986年至2015年的近30年期间,变暖趋势加速(高度可信)。自1986年以来,最热的一天、最热的一夜和最冷的一夜都出现了显著的变暖(对应8.5级特大地震6次,见表1-3)

        2023-2025年月亮赤纬角最大值和2024-2025年太阳黑子峰值可能进入新的特大地震活跃期。

         北美特大地震能量积累开始于2012年美国加州异常干旱

    北美洲西南部遭遇1200年以来最严重干旱:关注旱震理论

      新华社华盛顿2022年2月15日电(记者谭晶晶)英国《自然·气候变化》杂志14日刊登的一项新研究表明,北美洲西南部地区过去22年遭遇1200多年以来最为严重的特大干旱,该区域的旱情很可能持续至2022年年末。研究显示,自2000年以来,受降水量少和高温天气影响,北美洲西南部地区经历异常干旱,2021年的旱情尤为严重。自2000年至2021年的22个水文年,该地区的平均降水量比1950年至1999年50年间水平下降8.3%,气温较平均水平升高0.91摄氏度。这22个水文年成为该地区至少自公元800年以来最为干旱的22年。

https://finance.sina.com.cn/tech/2022-02-17/doc-ikyakumy6391453.shtml?cre=tianyi&mod=pchp&loc=38&r=0&rfunc=23&tj=cxvertical_pc_hp&tr=12

       美国大震早有预测

       2012年2月20日我们在《给美国同行的协查通报》中指出,干旱和暖冬是地震前兆吗?

       耿庆国提出了旱震理论:6级以上大地震的震中区,震前1――3年半时间内往往是旱区。旱区面积随震级大小而增减。在旱后第三年发震时,震级要比旱后第一年内发震增大半级。

       美国的异常干旱和暖冬可以被锁定在旱震理论的范围之内,可检验的异常现象接踵而来。

http://blog.sciencenet.cn/blog-2277-539490.html

       美国加州严重干旱已经持续了4年,发生强震的可能性逐年增强。

       中新网2015年4月2日电据“中央社”报道,由于严重干旱,美国加州州长布朗(JerryBrown)下令实施强制性限水措施。这在加州历史上是第一次。

http://news.sina.com.cn/w/2015-04-02/091631674063.shtml

       极端灾害集中美国绝非偶然:巨大能量在地下蠢蠢欲动。

http://blog.sciencenet.cn/blog-2277-752313.html

http://blog.sciencenet.cn/blog-2277-755583.html

       3年过去了,美国加州干旱持续发展,大震不发,干旱不止。

http://blog.sciencenet.cn/blog-2277-879236.html

http://blog.sciencenet.cn/blog-2277-907825.html

       综合分析表明,美国西海岸地下的甲烷高压气体是干旱、高温、龙卷风、暴雨、山火等自然灾害频发的原因,是大震发生的明显前兆。四川汶川地震是前车之鉴。

http://blog.sciencenet.cn/blog-2277-1010481.html

       请注意监测加州的天然气地表和地下浓度异常。它是大震发生的最可靠前兆。

       杜乐天认为,山火可能源自地下排气,加州山火拉响了灾害警报。

http://blog.sciencenet.cn/blog-2277-1126508.html

http://blog.sciencenet.cn/blog-2277-1126663.html

http://blog.sciencenet.cn/blog-2277-1145654.html

http://blog.sciencenet.cn/blog-2277-1145945.html

http://blog.sciencenet.cn/blog-2277-1146029.html

http://blog.sciencenet.cn/blog-2277-1147353.html

全球变暖导致的地震活动增强并没有引起气象学家的重视,他们只注意气象变化,忽视了构造运动导致的更严重的灾害:海平面上升只能淹没沿海地区,地震灾难将遍及环太平洋地震带和欧亚地震带,内陆和青藏高原也不能幸免。

根据20世纪80年代以来的全球变暖速度和规模,2000-2030年拉马德雷冷位相时期的地震强度将明显高于1947-1976年拉马德雷冷位相时期,目前特大地震数量刚刚持平,强度还相差很多,今后30-50年会更加强烈。

冰川消长,海平面升降,使大陆和海洋在小冰期和温暖期有方向相反的垂直均衡运动,大震间断就是动力方向转换造成的间歇期。

如果2000-2035年拉马德雷冷位相时期异常变暖,大震间断就是动力方向转换造成的间歇期。间歇期意味原来能量耗净,需要更多反向的积累能量,且下次大震将发生在2035-2055年的变暖时期。

如果2022-2035年拉马德雷冷位相时期异常变冷,美国大震预测就在2000-2035年拉马德雷冷位相时期和2055-2090年拉马德雷冷位相时期发生。

https://blog.sciencenet.cn/blog-2277-1325890.html


       大规模山火来自地下喷气


“热穹顶”来自构造干旱:地热涡是热源

                                                      吉林大学:杨学祥,杨冬红

       千年难遇的“热穹顶”现象

       根据美国媒体报道,形成这一波极端天气的原因,正是由于北美地区形成了一个巨大的“热穹顶”现象,导致热空气无法消散。所谓“热穹顶”,是指天空中热高气压区域停滞不动,并像泵一样不断排斥冷空气,吸收热空气,使气温越升越高。这就像是一个巨大的罩子盖在了这个地区,热空气被困在里面出不来,外面还不停向里面输送热空气。

       根据地理结构分析,美加边境属于中纬地区,发生的大气环流是西风带,西风会将太平洋中的热空气带向北美大陆。而这次大气环流在北美大陆上出现变化,使原本热气流变得波动性更强,弯曲度更大和移动速度更为缓慢,前面气流流速慢,后面气流速度快,这就造成了前面气流还没有流过,后面气流还在往前面顶,就会使出现变化的地方产生“交通堵塞”的现象。随之而来的是气流发生弯曲,弯曲的地方自然就会向北边低气压区域移动,最终气流形成“Ω”形状,这个形状就被称为“Ω块”(OMEGA BLOCK),中间区域就会不停地吸收后面气流的热量,这就导致内部高温不散。

       据美国哥伦比亚广播公司报道称:这种现象从某种程度来说,比一千年才会发生一次的事件还要罕见。换种话来说就是,在某个地方1000年都不一定会经历“热穹顶”这种情况。这就被形容为千年难遇的现象。

       地热涡是“热穹顶”现象的主要热源

  著名气象学家汤懋苍的地热涡理论曾受到国际气象界的关注,在富集地热的地区,有地下水源则含水热气生成巨量云层,降雨充沛,如雅鲁藏布江大峡谷的墨脱地区;缺水则干燥热气蒸腾,烘烤尽土壤水分,造成赤地千里,其前提条件是长期无降水,所形成的干旱称为构造干旱。

  无降水的干旱为地表缺水的表层干旱,称为气象干旱,一旦有了降水就会得到缓解。而构造干旱是地下缺水的深度干旱,即使有少量降水也无法缓解。构造干旱的特点是面积大,范围广,时间长,与地热带、构造带和地震带分布和地震周期有关,这就是旱震理论所讨论的内容。

      2004年12月26日印尼苏门答腊9.1级地震发生后,2005年3月29日、2007年9月12日又连续发生2次8.5级以上地震,印度洋板块北推印度大陆向青藏高原挤压态势愈演愈烈。这一构造背景导致2006年四川特大干旱和2008年5月12日四川汶川8级地震。我们称2006年的四川干旱为构造干旱。2009年9月2日印尼爪哇岛发生里氏7.4级强烈地震,2010年3月6日苏门答腊西南以远地区发生7.1级地震,表明该地区地应力积累依然强烈。

https://blog.sciencenet.cn/blog-2277-1279297.html

       美国加州的高温干旱从2012年一直持续至今,我们称之为构造干旱,是2021年北美“热穹顶”主要的热能来源。2021年7月29日阿拉斯加发生8.1级地震就是证据。

       2012年2月20日我们在《给美国同行的协查通报》中指出,干旱和暖冬是地震前兆吗?

       耿庆国提出了旱震理论:6级以上大地震的震中区,震前1――3年半时间内往往是旱区。旱区面积随震级大小而增减。在旱后第三年发震时,震级要比旱后第一年内发震增大半级。

       美国的异常干旱和暖冬可以被锁定在旱震理论的范围之内,可检验的异常现象接踵而来。

http://blog.sciencenet.cn/blog-2277-539490.html

       美国加州严重干旱已经持续了4年,发生强震的可能性逐年增强。

       中新网2015年4月2日电据“中央社”报道,由于严重干旱,美国加州州长布朗(JerryBrown)下令实施强制性限水措施。这在加州历史上是第一次。

http://news.sina.com.cn/w/2015-04-02/091631674063.shtml

       极端灾害集中美国绝非偶然:巨大能量在地下蠢蠢欲动。

http://blog.sciencenet.cn/blog-2277-752313.html

http://blog.sciencenet.cn/blog-2277-755583.html

       3年过去了,美国加州干旱持续发展,大震不发,干旱不止。

http://blog.sciencenet.cn/blog-2277-879236.html

http://blog.sciencenet.cn/blog-2277-907825.html

       综合分析表明,美国西海岸地下的甲烷高压气体是干旱、高温、龙卷风、暴雨、山火等自然灾害频发的原因,是大震发生的明显前兆。四川汶川地震是前车之鉴。

http://blog.sciencenet.cn/blog-2277-1010481.html

       请注意监测加州的天然气地表和地下浓度异常。它是大震发生的最可靠前兆。

       杜乐天认为,山火可能源自地下排气,加州山火拉响了灾害警报。

http://blog.sciencenet.cn/blog-2277-1126508.html

http://blog.sciencenet.cn/blog-2277-1126663.html

http://blog.sciencenet.cn/blog-2277-1145654.html

http://blog.sciencenet.cn/blog-2277-1145945.html

http://blog.sciencenet.cn/blog-2277-1146029.html

http://blog.sciencenet.cn/blog-2277-1147353.html

       中国地震台网正式测定:2019年07月05日01时33分在美国加利福尼亚州(北纬35.71度,西经117.51度)发生6.4级地震,震源深度10千米。专家预测,未来几周发生另一场大于6.4级地震的几率为9% ,一次大于5级的几率为20%。

http://blog.sciencenet.cn/blog-2277-1188188.html

http://blog.sciencenet.cn/blog-2277-1188156.html

        7月6日11时20分,美国加州又发生6.9级地震 ,大震预测初步得到证实。

        事实上,2012年2月20日我们在《给美国同行的协查通报》中指出,干旱和暖冬是加州地震前兆,大震不发,干旱不止。

        本次加州山火是大震发生的前兆。

http://blog.sciencenet.cn/blog-2277-1201802.html

        山火肆虐!这场“美国高烧”何年能退?

        大震不发,高烧不止。

       根据月亮赤纬角极值激发地震的历史规律,大震可能发生在2023-2025年月亮赤纬角最大值时期,地下能量释放后,高烧将逐渐退去。

       干旱、山火、高温、火山活动、地震,美国灾难源于加州地下能量释放,由此引发的点源能量喷发模式即将进入能量释放高潮。

       千年难遇的“热穹顶”现象是地热涡作用的结果,是特大地震活跃期的前兆。    

http://blog.sciencenet.cn/blog-2277-306746.html

http://blog.sciencenet.cn/blog-2277-1160708.html

http://blog.sciencenet.cn/blog-2277-1164034.html

http://blog.sciencenet.cn/blog-2277-1294014.html

https://blog.sciencenet.cn/blog-2277-1336912.html   

    全球进入特大地震活跃期

根据百年来地震历史记录,8.5级以上地震集中发生在拉阿德雷冷位相时期,是地震活跃的主要标志,7级或8级地震为标准分辨不出地震的活跃度(震级差一级,所释放的能量差30倍,即9级地震释放的能量是8级地震释放能量的30倍)。2006年我们给出了全球地震进入活跃期的地震分布证据: 

表1  8.5级以上强震集中在拉马德雷(PDO)冷位相时期(杨冬红,杨学祥;2006)

   

1890-1924

1925-1946

1947-1976

1977-1999

2000-2030

拉马德雷

冷位相

暖位相

冷位相

暖位相

冷位相

地震次数

64

11

117

00

22

注:括号()内为国外数据。

1889年以来,全球大于等于8.5级的地震共2418)次。在1889-1924PDO“冷位相发生61900年以来国外数据:4)次,在1925-1945PDO“暖位相发生11)次,在1946-1977PDO“冷位相及其边界发生11(7)次,在1978-2003PDO“暖位相发生0次,在2004-2012PDO“冷位相已发生6次。规律表明,PDO冷位相时期是全球强震的集中爆发时期和低温期。2000年进入了PDO冷位相时期,2000-2030年是全球强震爆发时期和低温期。2000-2016年是8.5级以上特大地震的活跃期。

2006年的预测已经得到证实,目前8.5级以上强震已由2006年的2次增加到6次,郭增建的深海巨震降温说PDO冷位相与低温冻害对应的物理原因。以8.5级地震为标准,很好地区分了地震活跃期和间歇期,并对地震活动的增强有预测作用,实用价值很大。

http://bbs.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=559756

http://blog.sciencenet.cn/blog-2277-560298.html 

表2  1890年以来特大地震活跃期和拉马德雷(PDO)冷位相对应关系

年代

8.5级以上地震次数

9级以上

地震次数

PDO时间位相

气候冷暖

 地震

全球

中国

1890-1924

64

1

0

1890-1924

低温期

 活跃期

1925-1945

11

0

0

1925-1946

温暖期


1946-1977

117

1

4

1957-1976

低温期

 活跃期

1978-1999

00

0

0

1977-1999

温暖期


2000-2035

66

0

2

2000-2035

低温期?

 活跃期

特大地震为Ms 8.5级以上强震,括号内为国外数据,?表示预测

我们在2006年确定的地震活跃期判定标准正在被学术界接受,得到相关部门和专家的认同。2006年的预测已经得到证实,目前8.5级以上强震已由2006年的2次增加到6次。

2023-2025年为月亮赤纬角最大值时期,2024-2025年为太阳黑子峰值,预计2023-2025年全球进入新的特大地震活跃期。日本和美国大震将在其中爆发(见表3)。

http://blog.sciencenet.cn/blog-2277-970946.html

https://blog.sciencenet.cn/blog-2277-1336236.html

表3 1890-2012年全球8.5级以上地震、月亮赤纬角极值与拉马德雷冷位相的对应性 

序号

地震时间

地震地点

震级

拉马德雷

月亮赤纬角


1895-1897

发生1次


冷位相

最大值

1

1896-06-15

日本

8.5

冷位相



1904-1906

发生1次


冷位相

最小值

2

1906-01-31

厄瓜多尔

8.8

冷位相



1913-1915

未发生

冷位相

最大值


1922-1924

发生2次


冷位相

最小值

3

1922-11-11

智利

8.5

冷位相


4

1923-02-03

俄罗斯堪察加半岛

8.5

冷位相



1931-1932

未发生


暖位相

最大值

5

1938-02-01

印尼班大海

8.5

暖位相



1940-1942

未发生


暖位相

最小值


1950-1952

发生2次


冷位相

最大值

6

1950-08-15

中国西藏

8.6

冷位相

最大值

7

1952-11-04

俄罗斯堪察加半岛

9.0

冷位相

最大值

8

1957-03-09

阿拉斯加

8.6

冷位相



1959-1960

发生1次


冷位相

最小值

9

1960-05-22

智利

9.5

冷位相

最小值

10

1963-10-13

俄罗斯库页岛

8.5

冷位相


11

1964-03-27

阿拉斯加威廉王子湾

9.2

冷位相


12

1965-02-04

阿拉斯加

8.7

冷位相



1968-1970

未发生


冷位相

最大值


1977-1979

未发生


暖位相

最小值


1986-1988

未发生


暖位相

最大值


1995-1997

未发生


暖位相

最小值


2005-2007

发生3次


冷位相

最大值

13

2004-12-26

印尼苏门答腊

9.1

冷位相

最大值

14

2005-03-28

印尼苏门答腊

8.6

冷位相

最大值

15

2007-09-12

印尼苏门答腊

8.5

冷位相

最大值

16

2010-02-27

智利

8.8

冷位相


17

2011-03-11

日本

9.0

冷位相


18

2012-04-11

印尼苏门答腊

8.6

冷位相



2014-2016

2023-2025

2032-2034

2041-2043

未发生

概率最大

概率大

概率最小


冷位相

冷位相

冷位相

暖位相

最小值

最大值

最小值

最大值

https://en.wikipedia.org/wiki/Lists_of_earthquakes

http://blog.sciencenet.cn/blog-2277-970946.html

http://blog.sciencenet.cn/blog-2277-1226754.html

http://blog.sciencenet.cn/blog-2277-1276175.html 

https://blog.sciencenet.cn/blog-2277-1279553.html

https://blog.sciencenet.cn/blog-2277-1316505.html 

https://blog.sciencenet.cn/blog-2277-1336514.html

       印度和巴基斯坦高温提供了特大地震周期的新的证据,特别最值得关注的是,增大青藏高原地震发生概率。

       特大地震导致全球气温升高 :既是能源也是前兆   

2800-2020年全球气温曲线.jpeg

图1  1880-2018年全球气温变化曲线

https://www.sohu.com/a/356959349_120451429

         图1给出的全球气温最明显峰值为1896年、1900、1906、1915、1921、1926、1931、1937-1939、1941、1944、1952-1953、1957-1958、1961、1962、1963、1969年、1973年、1978年、1982年、1984、1989年、1991-1992年、1997-1998年、2002-20032005、2007、 2010年、2014-2016年。

       表3给出了全球8.5级以上地震的年份为1896、1906、1922、1923、1938、1950、1952195719601963、1964、1965、2004、2005、2007、2010、2011、2012年。总计18次8.5级以上地震,有13次发生在全球气温峰年,占72.22%。 

   数据分析表明,全球气温的升高包含特大地震释放的能量,所以全球气温的异常增高,可能是特大地震发生的前兆。特大地震释放的地下热能也是全球气温升高的原因。因为温室气体的上升是平稳的,所以温室气体所造成的气温上升与特大地震造成的气温上升截然不同,突发是后者的最大特征。

   值得关注的是,在特大地震发生前几年,最热年就接连发生,为特大地震积蓄能量。例如,1998年20世纪最热年为2004-2007年特大地震群积蓄能量。

        全球温度异常升高是特大地震发生的前兆。2017-2021年全球5级以上地震次数的成倍增加提供了新的证据。

https://blog.sciencenet.cn/blog-2277-1334352.html 

       月亮赤纬角极值导致8级以上地震发生

图2 是根据张家诚等人的公元前426年至公元1980年全球8级以上地震目录编绘的[14]。在月亮赤纬角最小时的1905-1906年、1923-1925年、1941-1942年、1959-1960年、1977-1979年,地球平均扁率变大,地球自转变慢;在月亮赤纬角最大时的1896-1897年、1913-1914年、1931-1932年、1949-1951年、1968-1970年,地球平均扁率变小,地球自转变快。8级以上地震高潮也有相应的约9年变化周期:1897- 1906- 1914- 1923- 1932- 1941- 1950- 1960- 1971- 1978年。应该说明的是,1960522日智利南部发生9.5级地震,释放能量相当于8.5级地震的30倍。因此,在月亮赤纬角最小时的1959-1960年地震活动也很强烈。这是地震与地球扁率变化和自转速度变化相对应的原因,也是强潮汐激发地震火山活动的原因。

 


图2  1896-19788级以上地震分布(杨冬红等,2008

全球气温变化的18.6年周期 

我们在2008年发表的期刊论文中指出,当月亮在南(北)纬28.6度(月亮赤纬角最大值)时,高潮区在12小时后从南(北)纬28.6度向北(南)纬28.6度震荡一次[20],大气和海洋的南北震荡将产生巨大的能量交换并搅动深海冷水上翻到海洋表面降低气温。这是以18.6年为周期的潮汐南北震荡作用比其他周期的潮汐东西震荡作用更显著的原因。太阳在南北回归线时也会产生潮汐南北震荡运动。1998年是最热的年份,1995-1997年月亮赤纬角最小值产生的弱潮汐南北震荡是原因之一;自1998年以后,全球气温呈波动下降趋势,2005-2007年月亮赤纬角最大值产生的强潮汐南北震荡是原因之一。2014-2016年月亮赤纬角最小值有利于全球变暖。

我在201414日指出,2014年是全球极端灾害频发年,高温、干旱、雾霾和强震是主要灾害。关键原因是2000-2030年拉马德雷冷位相和2014-2016年月亮赤纬角最小值。

1947-1976年拉马德雷冷位相时期中,1959-1960年月亮赤纬角最小值导致了中国高温干旱和雾霾,1960522日智利发生了近百年来最强的9.5级地震。我在2012522日指出,2000年进入拉马德雷冷位相,2012年的厄尔尼诺正在到来,我们必须做好迎接拉马德雷冷位相灾害链的准备:一个极端炎热的夏季和极端寒冷的冬季。2013年的拉尼娜事件非常强烈,将重复2010年强拉尼娜事件的大致过程。2013年为太阳黑子峰年、2014-2016年为月亮赤纬角最小值、2015年可年发生厄尔尼诺事件,我们可能迎来又一个最热年新纪录,不过,频发的强震可以降低变暖规模。

http://blog.sciencenet.cn/blog-2277-573747.html

我们在2008年指出,1998年是最热的年份,1997-199820世纪最强的厄尔尼诺事件和1995-1997年月亮赤纬角最小值产生的弱潮汐南北震荡是主要原因。自1998年以后,全球气温呈波动下降趋势,2005-2007年月亮赤纬角最大值产生的强潮汐南北震荡、19986月至20008月的强拉尼娜事件(1999年全球强震频发)和2004-2007年印尼苏门答腊38.5级以上地震是主要原因。下一次月亮赤纬角最小值2014-2016年产生的弱潮汐南北震荡有利于气温相对升高和中国北方的干旱;而2009-2018年特大地震集中爆发却可能使气温下降。

http://news.hexun.com/2010-03-25/123112612.html

http://blog.sciencenet.cn/blog-2277-854442.html

http://blog.sciencenet.cn/blog-2277-789865.html

月亮赤纬角最大值形成大气和海洋潮汐南北震荡的最大振幅(南北纬28.6度之间),形成赤道和两极最强烈的冷热交换,导致赤道和低纬度地区变冷,两极和高纬度地区变暖;月亮赤纬角最小值形成大气和海洋潮汐南北震荡的最小振幅(南北纬18.6度之间,比最大值减少了三分之一还强),形成赤道和两极最微弱的冷热交换,导致赤道和低纬度地区变暖,两极和高纬度地区变冷。

https://blog.sciencenet.cn/blog-2277-864772.html

         地震与厄尔尼诺的关系

       统计表明,厄尔尼诺与火山地震活动密切相关。对1763年以来的19次强厄尔尼诺事件进行的统计表明,70%以上的厄尔尼诺事件都发生在太平洋地震活动年,特别是1900年以来的7次强厄尔尼诺事件几乎无一例外地全都出现在太平洋地震活动年[1],70%以上的厄尔尼诺年都为火山活跃年[2]。

       1990年战淑芸根据地震统计资料得出赤道东太平洋海水增暖的年份全球地震增多的结论。1950~1979年期间,共有15个暖水年,其中12年均发生了8级以上强震,几率高达80%。

       根据公元前2000~公元1979年重大地震统计结果,在厄尔尼诺年,地中海、土耳其至帕米尔、喜马拉雅东段、东南亚、中国及日本一带为地震多发区;厄尔尼诺后一年,美洲西部太平洋沿岸一带为地震多发区,与东西太平洋海面反向变化相关[1]。

http://blog.sciencenet.cn/blog-2277-516405.html

https://blog.sciencenet.cn/blog-2277-950127.html

     过去四年史上最热 未来五年可能更热

图3  1960-2020年全球气温变化曲线

       上图以1850年至1900年的工业化前全球平均气温为基线,图中黑色曲线代表观测到的全球年平均气温数值,红色区域和紫色区域分别代表此前和未来5年的预测值。(图片来源:英国气象局官网)

        多家权威机构2019年2月6日确认,2015年至2018年是自100多年前有气温记录以来最热的四年,其中2018年是史上第四热年。英国气象局预测,2019年至2023年可能比过去四年还要热。

https://www.sohu.com/a/293667233_348961

        特大地震和厄尔尼诺叠加导致全球气温升高   

         图2-3 给出的全球气温最明显峰值为1960-1965年、1969年、1976年、1979年、1982年、1986-1987年、1990-1992年、1997-1998年、2002- 2010年、2014-2016年。 其中,1963,1965,1969,1972,1976,1982,1986,1987,1991,1997,2002,2004,2006,2009,2014,2015年都发生了厄尔尼诺事件。所以,1960年5月22日智利9.5级特大地震对全球增温作用最显著,1963-1965年三次8.5级以上特大地震伴随1963年和1965年两次厄尔尼诺事件的增温作用也很明显,2004、2005、2007、2010年4次8.5级以上特大地震伴随2004年、2006年、2009年三次厄尔尼诺事件的增温作用也很突出。2011年和2012年的8.5级以上地震的增温作用,被2010-2011年强拉尼娜事件所抵消,形成一个显著的温度低谷。2016年的最高温归属于2014-2016年最强厄尔尼诺事件,能否导致下一次特大地震有待于时间来解答。

https://blog.sciencenet.cn/blog-2277-1335912.html

全球变暖导致的冰川融化和海平面上升是元凶 

发表于《Nature Communications》上的一项研究指出,到2100年全球海平面可能将上升3.3米。对此,科学家警告,而上涨幅度一旦突破4米,世界上所有的沿海城市都必须搬迁,受影响人口数量远超此前估计的4.8亿。 

气象学家指出的全球变暖10大危害是,海平面上升、全球气温升高、海水温度升高、冰盖萎缩、海水酸化、积雪覆盖面积减少、极端气候事件等等。

气象学家忽略了地质学上的两项重要活动:地震和火山给人类带来的灾难。

事实上,由于全球变暖,导致冰川融化和海平面上升,改变了地表的物质分布,破坏了地表的地壳均衡,引发强烈的地震火山活动,给人类带来巨大的灾难。

我们在2011年撰文指出,强震与全球气候变化关系的地球物理解释是:全球冷暖变化导致的海平面升降,破坏了地壳的重力均衡,引起加载或卸载的海洋地壳均衡下沉或上升,并导致相应的水平运动。 

全球8.5级以上大震集中发生在亚洲和美洲 

我们在2011年建立了地震和气候相互影响的地球物理模型,地震火山活动和气候的相互影响具有普遍意义。气象学家忽视了一个明显的事实:全球变暖的最大危害是,与强烈的地震火山活动互动,引发气象-地质超级灾害链。

全球变暖对人类的威胁,不仅在于冰川融化造成的海平面上升,而且在于地表巨量的物质转移所产生的地壳均衡运动。气象灾害和地质灾害相互影响,构成气象-地质超级灾害链。

1890-1924年拉马德雷冷位相时期,全球8.5级以上地震发生4次,亚洲和美洲各发生2次。

1947-1976年拉马德雷冷位相时期,全球8.5级以上地震发生7次,亚洲发生3次,美洲发生4次。

2000-2016年拉马德雷冷位相时期,全球8.5级以上地震发生6次,亚洲发生5次,美洲发生1次。

趋势对比表明,亚洲进入特大地震集中爆发时期。美国地震的可能性也不能忽视。

全球8.5级以上地震的三大统计特征 

全球8.5级以上地震第一个统计特征是,地震的发生地点具有明显的洲际差别:只发生在美洲和亚洲(见表1-2)。美洲、亚洲与欧洲、非洲、澳洲的最大差别是具有高耸的山脉和广袤的山地冰川。

全球8.5级以上地震第二个统计特征是,全球8.5级以上地震的发生时间和频率具有明显的波动性,其规律就是集中发生在拉马德雷冷位相时期。这为我们预防地震和预测地震提供了极为重要的理论根据。这也否定了特大地震发生的随机特性,表明特大地震具有明显的周期性(见表1-2)。2000-2030年拉马德雷冷位相已过去20年,发生了68.5级以上地震。2020-2030年的后十年值得警惕。

全球8.5级以上地震第三个统计特征是,海岛的9级地震发生后,8.5级以上地震连续发生,这对日本地震有参考意义。2004200520072012年的4年中,印尼苏门答腊岛发生了48.5级以上地震;阿拉斯加半岛在195719641965年也发生了3次强震(见表1)。日本的后续地震不得不防。

http://blog.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=539829

http://blog.sciencenet.cn/blog-2277-607387.html

http://blog.gmw.cn/u/466/archives/2005/8795.html

http://blog.sciencenet.cn/blog-2277-365593.html

http://blog.sciencenet.cn/blog-2277-694731.html 

对比表明,亚洲进入特大地震集中爆发时期 

全球气候变暖已导致喜马拉雅山上的冰川融化加快。冰川湖泊水位不断增高,最终会导致许多湖泊崩堤。据联合国环境规划署对尼泊尔境内的三千二百五十二个冰川和二千三百二十三个冰川湖进行了长达三年的观测显示,这些地区的气温比二十世纪七十年代升高了整整一摄氏度。研究表明,尼泊尔境内的二十个冰川湖和不丹境内的二十四个冰川湖的水位持续上升,五至十年内,这些湖泊将会崩堤,世界其它地区的许多冰川湖也面临同样的威胁。由山岳冰川融化而成的水是河流的源头。如果全球的冰川快速融化,世界上许多河流将会干涸,可饮用水的水源将迅速减少,人类以及动物的生存就会面临严重威胁。另外,全球水位上升也将减少人类的可用土地。

http://tech.sina.com.cn/d/2008-12-18/09582665926.shtml

425日尼泊尔发生8.1级破坏性地震。外媒报道,科学家确认地震后世界最高峰高度下降1英寸约合2.5厘米。其证据来自欧洲航天局Sentinel-1A卫星429日在珠穆朗玛峰上采集到的数据。

http://news.163.com/15/0508/14/AP3N46TO00014AED.html

青藏高原是世界屋脊,近30年冰盖融化显著,自然是地壳均衡最强烈的地区。中国地震后,陆海地壳的负荷在内陆地区得到大致调整,接下来就是在陆海连接处的岛弧发生强震。岛弧强震是全球范围的,遍布东西太平洋和印度洋。这就完成了一个循环。

如果上述规律成立,下一个8级以上强震就必定发生在陆海连接处,按路线图,危险性的排列为:日本、印尼、堪察加半岛附近高纬度地区、南北美太平洋沿海地区。其中,日本、俄罗斯和印尼发生强震的风险最大,其后是南北美太平洋沿海地区。

事实上,2010年智利发生8.8级地震,2011年日本发生9级地震,2012年印尼发生8.6级地震。

http://blog.sciencenet.cn/blog-2277-489273.html

http://blog.sciencenet.cn/blog-2277-27387.html 

青藏高原冰盖融化将导致地壳均衡上升,这与尼泊尔大地震导致喜马拉雅山脉下降相矛盾,除非尼泊尔地区的冰川不是融化,而是增加。

事实上,尼泊尔地区的冰川确实在稳定的增加,从而导致地壳的均衡下降。

据美国全国广播公司415日报道,法国格勒诺布尔大学的最新研究发现,与全球变暖引发的全球冰川消融趋势相反,1999年到2008年期间,喜马拉雅山脉的部分冰川不但没有减小,反而有所增长。

全球变暖正导致冰川、冰帽、冰盖消融,造成海平面上升,威胁低地和岛屿上的居民安全。然而法国格勒诺布尔大学的研究发现,与这种全球趋势完全不同的是,1999年到2008年间,喜马拉雅山脉上的喀喇昆仑山脉(Karakoram)冰川却在以每年11厘米到22厘米的速度增长。

喀喇昆仑山位于中国、印度、以及巴基斯坦等国边境上,冰川面积近2万平方公里。喜马拉雅山脉是除两极外世界上最大的冰体所在地,是恒河与雅鲁藏布江等著名大河的源头。

http://gb.cri.cn/27824/2012/04/16/5105s3644102.htm

腾讯科学讯(悠悠/编译)据英国每日邮报报道,当前喜马拉雅山脉整体气候处于改变之中,但是气候如何变化对某些特殊地区的影响“仍然不清楚”。最新一项研究表明,喜马拉雅山脉东部和中部地区的冰川类似于地球其它地区,正处于加速消退状态;而喜马拉雅山脉西部冰川则处于稳定增长状态。

http://tech.qq.com/a/20120915/000031.htm

尼泊尔大地震导致的珠峰下降证实了喜马拉雅山脉西部冰川则处于稳定增长状态。

尼泊尔大地震是更大地震的前兆和信号,喜马拉雅山脉冰川融化区域的大地震可能性在全球变暖中持续增大。

尼泊尔大地震不能用板块碰撞来解释,冰川消长导致的地壳均衡是主要动力。印度洋海平面上升也能导致印度洋地壳的下降运动,推动印度大陆挤压青藏高原。 

重要结论 

全球变暖对人类的威胁,不仅在于冰川融化造成的海平面上升,而且在于地表巨量的物质转移所产生的地壳均衡运动使特大地震在美洲和亚洲集中发生。气象灾害和地质灾害相互影响,构成气象-地质超级灾害链。

http://blog.sciencenet.cn/blog-2277-972518.html

http://blog.sciencenet.cn/blog-2277-984342.html 

http://blog.sciencenet.cn/blog-2277-1206041.html 

http://blog.sciencenet.cn/blog-2277-1207767.html 

http://blog.sciencenet.cn/blog-2277-1208310.html  

https://blog.sciencenet.cn/blog-2277-1208595.html


最新结论

2022年1月15日汤加火山喷发出千年积累的地下热能,形成异常的大气振荡;

2022年6月太阳耀斑猛烈喷发,增强地磁层漏能效应和臭氧洞漏能效应;

https://blog.sciencenet.cn/blog-2277-1343978.html

根据球面点喷数学模型,汤加的球面对称点为西非的加纳,是能量的集中地,也是高温集中在欧洲的原因。南极红光就是证据;

汤加火山灰增大了两极臭氧洞或低值区,形成臭氧洞漏能效应,使两极异常增温;北半球异常增温已成为事实,关注2022年9月末南极臭氧洞异常扩大造成的南极增温以及增大厄尔尼诺形成的可能性。

http://blog.sciencenet.cn/blog-2277-1146733.html 

http://blog.sciencenet.cn/blog-2277-1148356.html 

2023-2025年可能为太阳黑子峰值,导致太阳能量释放增加;2023-2025年也是月亮赤纬角最大值,导致地球潮汐最大形变,增强地震火山活动和地球内能释放。

2004-2012年6次8.5级以上特大地震、2019年澳大利亚山火惨案、2010年和2021年3月冰岛火山喷发、2021-2022年全球异常高温和2022年1月千年一遇汤加火山喷发,敲响地球内能释放的警钟。

      根据第六次国际耦合模式比较计划(CMIP6)中的检测归因模式比较计划(DAMIP),中国科学院南海海洋研究所研究员王春在研究团队估算了中等排放情景(SSP245)下,2021-2100年北美西部发生类似本次热浪事件的概率。2021-2100年北美西部地表大气温度的概率密度分布曲线将整体向更高的温度移动,这也将导致北美西部发生类似本次热浪事件的概率从1.2%提高到32.18%。

       这为北美西部特大地震敲响警钟!

参考文献

杨学祥. 地球深部动力学说的意义与进展. 见:张中杰,高锐,吕庆田,等。中国大陆地球深部结构与动力学研究——庆贺藤吉文院士从事地球物理研究50周年。北京:科学出版社,2004314-318

杨学祥韩延本陈震乔琪源强潮汐激发地震火山活动的新证据[J]. 地球物理学报, 2004, 474: 616-621

YANG X X, HAN Y B, CHEN Z, et al. New Evidence of Earthquakes and Volcano Triggering by Strong Tides. Chinese Journal of geophysics (in Chinese), 2004, 47(4): 616~621

杨冬红杨学祥刘财海平面震荡与地震的关系研究世界地质, 2004, 23(4): 407-410.

YANG Dong-hong, YANG Xue-xiang, LIU Cai. Relation between the Oscillation of Sea Level and Earthquakes. Global Geology. 2004, 23(4): 407-410. – (in Chinese)

Yang Donghong , Wang Ye , Yang Xuexiang. The Spherical Pattern of Tide-isostasy Model and its Application. J. Geosci. Res. NE Asia, 2004, 7 (2): 188~195.

Yang Donghong , Wang Ye , Yang Xuexiang. The Spherical Pattern of Tide-isostasy Model and its Application. J. Geosci. Res. NE Asia, 2004, 7 (2): 188~195.

杨冬红,杨学祥海洋中和海洋边缘巨震是调节气候恒温器理论的检验西北地震学报. 2005, 27(1): 96

杨冬红杨学祥刘财海平面震荡与地震的关系研究世界地质, 2004, 23(4): 407-410.

杨学祥,杨冬红,安刚,沈柏竹。连续18年“暖冬”终结的原因。吉林大学学报(地球科学版),200535(地球探测科学与技术论文集):137-140

杨冬红,杨学祥。重大自然灾害周期及其动力机制。见:中国地球物理学会编, 中国地球物理2005.长春:吉林大学出版社,2005.355-356

林玎,杨学祥,杨冬红。2004年厄尔尼诺事件的理论预测和实践检验。海洋预报。2005223):5-10

杨冬红,杨学祥。地震周期的数值估计。国际地震动态。2005,(12):37-43

杨学祥,杨冬红。旱涝周期和海震调温假说的新证据。西北地震学报。2005274):400398

杨学祥流感和强震爆发的预测百科知识. 2005, (24): 13-14.

Yang Donghong , Yang Xuexiang,Chen Dianyou. Motive force of Qinghai-Tibet Plateau moving to east. J. Geosci. Res. NE Asia, 2005, 8 (1/2): 123~125.

Yang Donghong , Yang Xuexiang. Earthquakes, strong tide and global low temperature. J. Geosci. Res. NE Asia, 2005, 8(1/2): 126~132.

 杨冬红,杨学祥。重大自然灾害周期及其动力机制。见:中国地球物理学会编, 中国地球物理2005.长春:吉林大学出版社,2005.355-356

杨冬红,杨学祥。“拉马德雷”冷位相时期的全球强震和灾害。西北地震学报。2006281):95-96

杨学祥。有多少人关注灾害预警。中国社会报。2006814日,第二版。

杨学祥,杨冬红。“太平洋十年涛动”冷位相时期的全球飓风等灾害。海洋预报。2006233):30-35

杨学祥。全球变暖还是变冷。科技潮,2006,(9):20-22

http://cn.qikan.com/gbqikan/view_article.asp?id=kjch20060907&yuedu=1

全球变暖还是变冷作者:杨学祥.《科技潮》20069  http://www.bestinfo.net.cn/wcm/bjkw/ztrd/ztrd_wz.jsp?art_id=39833&mag_id=153&year=2006&issue=9

杨冬红,杨学祥,刘财。20041226日印尼地震海啸与全球低温。地球物理学进展。2006213):1023-1027

Yang Dong hong,Yang Xxuexiang, Liu Cai. Global low temperature, earthquake and tsunami (Dec. 26, 2004) inIndonesia[J].Progress in Geophysics, 2006, 213: 10231027.

杨冬红杨学祥. 2007. 澳大利亚夏季大雪与南极海冰三个气候开关地球物理学进展22(5): 1680-1685.

Yang D H, Yang X X. 2007. Australia snow in summer and three ice regulators for El Nino events. Progress in Geophysics (in Chinese), 22(5): 1680-1685.

杨学祥,杨冬红。2007:拉马德雷冷位相时期的灾害链。见:高建国主编,苏门答腊地震海啸影响中国华南天气的初步研究――中国首届灾害链学术研讨会论文集。气象出版社, 200-204

杨冬红,杨学祥。流感世界大流行的气候特征。沙漠与绿洲气象。200713):1-8

杨冬红,杨学祥。潮汐变化周期及其相关灾害链。见:高建国主编,苏门答腊地震海啸影响中国华南天气的初步研究——中国首届灾害链学术研讨会论文集。气象出版社,2007205-209

杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.

Yang Dong-hong. 2009.Tidal Periodicity and its Application in Disasters Prediction[D]. [Ph. D.thesis]. ChangchunCollege of Geo-exploration Science and Technology, Jilin   University.

 杨冬红,杨德彬。日食诱发厄尔尼诺现象的热-动力机制。世界地质。2010294):652-657.YangDH,Yang D B. Thermal dynamic mechanism of ElNino induced by solareclipse.GlobalGeology (in Chinese), 2010, 29 (4):652-657.

杨学祥,杨冬红。拉马德雷冷暖位相转换说值得研究。日期:2010-01-12来源:文汇报。12版:科技文摘。

YANG Donghong, YANG Debin, YANG Xuexiang. Global influenza in cold phase of Pacific Decade Oscillation. Global Geology, 2010,13(2):104-107

杨冬红,杨德彬,杨学祥. 2011. 地震和潮汐对气候波动变化的影响[J]. 地球物理学报, 544):926-934

Yang D H,Yang D B, Yang X X, The influence oftidesandearthquakes in globalclimatechanges. Chinese Journal of geophysics (in Chinese),2011, 54(4): 926-934

杨学祥。透过专家看世界 专家观点仅仅是某专业的观点。格式:PDF 页数:15 上传日期:2012-08-25 02:42:37

https://www.doc88.com/p-703920132830.html

杨冬红,杨学祥全球气候变化的成因初探地球物理学进展. 2013, 28(4): 1666-1677. Yang X X, Chen D Y. Study oncause of formation in Earths climatic changes. Progress in Geophysics (inChinese), 2013, 28(4): 1666-1677.

杨冬红杨学祥.2013.a 地球自转速度变化规律的研究和计算模型地球物理学进展, 281):58-70

Yang D H, Yang XX. 2013a. Study and model on variation of Earths Rotation speed. Progress inGeophysics (in Chinese), 281):58-70.

杨学祥,杨冬红。2014-2016年月亮赤纬角最小值时期雾霾进入高发期。2013天灾预测总结研讨学术会议论文集。2013,万方数据库。

杨冬红杨学祥北半球冰盖融化与北半球低温暴雪的相关性[J]. 地球物理学进展, 2014, 29(2):610-615. YANG Dong-hong, YANG Xue-xiang. Studyon the relation between ice sheets melting and low temperature in NorthernHemisphere. Progress in Geophysics. 2014, 29 (1): 610615.

杨学祥,杨冬红。20141-2月潮汐组合与雾霾对应的检验。2014天灾预测学术研讨会议论文集。2014224-237,万方数据库。

杨学祥,杨冬红。2013年中国雾霾高发的气象原因初探。科学家. 2014, (3): 90-91.YANG Xue-xiang,YANGDong-hong.MeteorologicalAnalysis of ReasonsCausing China'sFrequent SmogWeatherin 2013. Technology andlife. 2014, (3): 90-91.

曾佐勋,刘根深,李献瑞,贺赤诚,杨学祥,杨冬红。鲁甸地震(Ms6.5)临震预测、中期预测 及中地壳流变结构。DOI:10.3799/dqkx.2014.159。地球科学。2014,3912):1751-1762. 

杨冬红, 杨学祥灾害链警钟:长白山火山喷发和小冰期相互作用及其危害第三届中国防灾减灾之路学术研讨会:纪念唐山抗震40周年暨平安京津冀学术研讨会论文集。2016:209-215.

杨冬红, 杨学祥直面巨灾威胁:气象-地震-经济超级灾害链周期及其预测方法. . 第三届中国防灾减灾之路学术研讨会:纪念唐山抗震40周年暨平安京津冀学术研讨会论文集。 2016:201-208.

杨冬红, 杨学祥自然灾害的周期研究及其成因探讨黑龙江气象. 2017.34卷第4P13-15

2004-2018年:全球进入特大地震频发期

已有 7089 次阅读 2008-5-10 11:08 科学网

http://blog.sciencenet.cn/blog-2277-24736.html

http://blog.sciencenet.cn/blog-2277-791640.html

http://blog.sciencenet.cn/blog-2277-913395.html

http://blog.sciencenet.cn/blog-2277-1100479.html

https://blog.sciencenet.cn/blog-2277-1336514.html

https://view.inews.qq.com/a/20220720A00T7800?uid=

https://blog.sciencenet.cn/blog-2277-1348164.html



https://blog.sciencenet.cn/blog-2277-1348423.html

上一篇:7月22日夜报:厄尔尼诺指数进入下降区间与19-20日弱潮汐组合对应
下一篇:7月23日早报:厄尔尼诺指数进入下降区间与19-20日弱潮汐组合对应
收藏 IP: 103.57.12.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-13 08:49

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部