||
印度遇122年来最高温!2022极端高温季开始:与特大地震活跃期对应
吉林大学:杨学祥,杨冬红
中新网1月21日电 据“中央社”报道,日前,印度气象局的研究显示,印度过去19年来气温显著升高,其中2000年是导致气候变暖的转折点,进而引发近年的天灾。如果不控制温室气体排放,印度到2040年将面临灾难性后果。
印度气象局(IMD)最新《印度2018年气候声明》报告指出,印度近年天然灾害明显增加,包括2018年克勒拉省的洪水及北部出现的沙尘暴,都与2000年以来的气温显著升高有关。印度气象局这份报告把19年来印度气温明显增加及气候变化联系起来,发现印度的变暖趋势与全球变暖模式类似。
根据世界气象组织(WMO)的《2018年全球气候概况》报告,地表气温从2000年以来出现气温上升最快趋势,20个“最热”的一年都出现在过去22年间。来自印度政府及独立机构的科学家警告,如果不控制温室气体排放,预计到2040年,印度的气温将上升1.5摄氏度,可能影响印度的农业,对沿海地区也将造成危害,且将使一些物种灭绝。
数据表明,2004-2012年全球进入特大地震活跃期,与2000-2012年全球气温快速上升密切相关。
2022年4月29日,世界气象组织发文称,酷热正席卷印度和巴基斯坦的大部分地区,影响着这个世界上人口最稠密地区之一的数亿人。
据世界气象组织,印度气象部门表示,4月28日大部分地区的最高气温达到了43-46摄氏度,这种高温将持续到5月2日。
巴基斯坦也出现了类似的温度。巴基斯坦气象部门表示,在该国的大部分地区,白天的温度可能比正常温度高5摄氏度至8摄氏度。该部门警告说,在吉尔吉特-巴尔蒂斯坦和开伯尔-普赫图赫瓦的山区,异常的高温会加速冰雪融化,并可能在脆弱地区引发冰湖溃决洪水或山洪暴发。空气质量已经恶化,大片土地面临极度的火灾危险。
今年,印度出现了有史以来最热的3月,平均最高气温为33.1摄氏度,比长期平均气温高出1.86摄氏度。巴基斯坦也记录了至少60年来最热的3月,许多气象站打破了纪录。 譬如,巴基斯南部城市土尔巴特(Turbat)在2017年5月28日就记录了世界第四高的温度——53.7摄氏度。
世界气象组织表示,预计21世纪印度季风季节前的热浪频率、持续时间、强度和覆盖面积将大幅增加,而热浪是由高压系统触发的。
世界气象组织并解释道,在季风季节前,印度和巴基斯坦都经常出现高温,尤其是在5月。但热浪发生在4月的情况,不太常见。
世界气象组织表示,将印度和巴基斯坦的极端高温仅仅归因于气候变化还为时过早。然而,这与该组织对气候变化的预期是一致的。热浪比过去更频繁、更强烈、开始得更早。
政府间气候变化专门委员会在其第六次评估报告中说,本世纪南亚的热浪和湿热压力将更加强烈和频繁。印度地球科学部最近发布了一份关于印度气候变化的公开出版物。它用了整整一章来讨论温度变化。
1951年至2015年期间,印度极端温暖天气的频率增加,在1986年至2015年的近30年期间,变暖趋势加速(高度可信)。自1986年以来,最热的一天、最热的一夜和最冷的一夜都出现了显著的变暖。
印度季风季节前的热浪频率、持续时间、强度和覆盖面积预计在21世纪将显著增加(高度可信)。
据第一财经5月1日报道,当地时间30日,印度气象局预测,5月,印度北部和西部地区的气温可能高达50摄氏度,对作物和工业活动产生不利影响,这一读数已经接近印度122年来最高水平了。
https://new.qq.com/rain/a/20220502A0056500
我们讨论了全球增温与特大地震的对应关系,也讨论了中国增温与8级以上地震对应关系,还讨论了美国高温山火与地下热能的对应关系。
https://blog.sciencenet.cn/blog-2277-1336488.html
https://blog.sciencenet.cn/blog-2277-1336337.html
https://blog.sciencenet.cn/blog-2277-1336236.html
世界气象组织表示,将印度和巴基斯坦的极端高温仅仅归因于气候变化还为时过早。
事实上,印度高温与全球特大地震活跃期有很好的对应关系: 1951年至2015年期间,印度极端温暖天气的频率增加,对应1950-1965年特大地震活跃期(对应8.5级特大地震7次)和2004-2012年(对应8.5级特大地震6次)特大地震活跃期;在1986年至2015年的近30年期间,变暖趋势加速(高度可信)。自1986年以来,最热的一天、最热的一夜和最冷的一夜都出现了显著的变暖(对应8.5级特大地震6次,见表1-3)。
2022年 4月29日,世界气象组织发文称,酷热正席卷印度和巴基斯坦的大部分地区,影响着这个世界上人口最稠密地区之一的数亿人。
据世界气象组织,印度气象部门表示,2022年4月28日大部分地区的最高气温达到了43-46摄氏度,这种高温将持续到5月2日。
巴基斯南部城市土尔巴特(Turbat)在2017年5月28日就记录了世界第四高的温度——53.7摄氏度。
2023-2025年月亮赤纬角最大值和2024-2025年太阳黑子峰值可能进入新的特大地震活跃期。
全球进入特大地震活跃期
根据百年来地震历史记录,8.5级以上地震集中发生在拉阿德雷冷位相时期,是地震活跃的主要标志,7级或8级地震为标准分辨不出地震的活跃度(震级差一级,所释放的能量差30倍,即9级地震释放的能量是8级地震释放能量的30倍)。2006年我们给出了全球地震进入活跃期的地震分布证据:
表1 8.5级以上强震集中在拉马德雷(PDO)冷位相时期(杨冬红,杨学祥;2006)
时 间 | 1890-1924 | 1925-1946 | 1947-1976 | 1977-1999 | 2000-2030 |
拉马德雷 | 冷位相 | 暖位相 | 冷位相 | 暖位相 | 冷位相 |
地震次数 | 6(4) | 1(1) | 11(7) | 0(0) | 2(2) |
注:括号()内为国外数据。
1889年以来,全球大于等于8.5级的地震共24(18)次。在1889-1924年PDO“冷位相”发生6(1900年以来国外数据:4)次,在1925-1945年PDO“暖位相”发生1(1)次,在1946-1977年PDO“冷位相”及其边界发生11(7)次,在1978-2003年PDO“暖位相”发生0次,在2004-2012年PDO“冷位相”已发生6次。规律表明,PDO冷位相时期是全球强震的集中爆发时期和低温期。2000年进入了PDO冷位相时期,2000-2030年是全球强震爆发时期和低温期。2000-2016年是8.5级以上特大地震的活跃期。
2006年的预测已经得到证实,目前8.5级以上强震已由2006年的2次增加到6次,郭增建的“深海巨震降温说”是PDO冷位相与低温冻害对应的物理原因。以8.5级地震为标准,很好地区分了地震活跃期和间歇期,并对地震活动的增强有预测作用,实用价值很大。
http://bbs.sciencenet.cn/home.php?mod=space&uid=2277&do=blog&id=559756
http://blog.sciencenet.cn/blog-2277-560298.html
表2 1890年以来特大地震活跃期和拉马德雷(PDO)冷位相对应关系
年代 | 8.5级以上地震次数 | 9级以上 地震次数 | PDO时间位相 | 气候冷暖 | 地震 | |
全球 | 中国 | |||||
1890-1924 | 6(4) | 1 | 0 | 1890-1924冷 | 低温期 | 活跃期 |
1925-1945 | 1(1) | 0 | 0 | 1925-1946暖 | 温暖期 | |
1946-1977 | 11(7) | 1 | 4 | 1957-1976冷 | 低温期 | 活跃期 |
1978-1999 | 0(0) | 0 | 0 | 1977-1999暖 | 温暖期 | |
2000-2035 | 6(6) | 0 | 2 | 2000-2035冷 | 低温期? | 活跃期 |
注: 特大地震为Ms 8.5级以上强震,括号内为国外数据,?表示预测
我们在2006年确定的地震活跃期判定标准正在被学术界接受,得到相关部门和专家的认同。2006年的预测已经得到证实,目前8.5级以上强震已由2006年的2次增加到6次。
2023-2025年为月亮赤纬角最大值时期,2024-2025年为太阳黑子峰值,预计2023-2025年全球进入新的特大地震活跃期。日本和美国大震将在其中爆发(见表3)。
http://blog.sciencenet.cn/blog-2277-970946.html
https://blog.sciencenet.cn/blog-2277-1336236.html
表3 1890-2012年全球8.5级以上地震、月亮赤纬角极值与拉马德雷冷位相的对应性
序号 | 地震时间 | 地震地点 | 震级 | 拉马德雷 | 月亮赤纬角 |
1895-1897 | 发生1次 | 冷位相 | 最大值 | ||
1 | 1896-06-15 | 日本 | 8.5 | 冷位相 | |
1904-1906 | 发生1次 | 冷位相 | 最小值 | ||
2 | 1906-01-31 | 厄瓜多尔 | 8.8 | 冷位相 | |
1913-1915 | 未发生 | 冷位相 | 最大值 | ||
1922-1924 | 发生2次 | 冷位相 | 最小值 | ||
3 | 1922-11-11 | 智利 | 8.5 | 冷位相 | |
4 | 1923-02-03 | 俄罗斯堪察加半岛 | 8.5 | 冷位相 | |
1931-1932 | 未发生 | 暖位相 | 最大值 | ||
5 | 1938-02-01 | 印尼班大海 | 8.5 | 暖位相 | |
1940-1942 | 未发生 | 暖位相 | 最小值 | ||
1950-1952 | 发生2次 | 冷位相 | 最大值 | ||
6 | 1950-08-15 | 中国西藏 | 8.6 | 冷位相 | 最大值 |
7 | 1952-11-04 | 俄罗斯堪察加半岛 | 9.0 | 冷位相 | 最大值 |
8 | 1957-03-09 | 阿拉斯加 | 8.6 | 冷位相 | |
1959-1960 | 发生1次 | 冷位相 | 最小值 | ||
9 | 1960-05-22 | 智利 | 9.5 | 冷位相 | 最小值 |
10 | 1963-10-13 | 俄罗斯库页岛 | 8.5 | 冷位相 | |
11 | 1964-03-27 | 阿拉斯加威廉王子湾 | 9.2 | 冷位相 | |
12 | 1965-02-04 | 阿拉斯加 | 8.7 | 冷位相 | |
1968-1970 | 未发生 | 冷位相 | 最大值 | ||
1977-1979 | 未发生 | 暖位相 | 最小值 | ||
1986-1988 | 未发生 | 暖位相 | 最大值 | ||
1995-1997 | 未发生 | 暖位相 | 最小值 | ||
2005-2007 | 发生3次 | 冷位相 | 最大值 | ||
13 | 2004-12-26 | 印尼苏门答腊 | 9.1 | 冷位相 | 最大值 |
14 | 2005-03-28 | 印尼苏门答腊 | 8.6 | 冷位相 | 最大值 |
15 | 2007-09-12 | 印尼苏门答腊 | 8.5 | 冷位相 | 最大值 |
16 | 2010-02-27 | 智利 | 8.8 | 冷位相 | |
17 | 2011-03-11 | 日本 | 9.0 | 冷位相 | |
18 | 2012-04-11 | 印尼苏门答腊 | 8.6 | 冷位相 | |
2014-2016 2023-2025 2032-2034 2041-2043 | 未发生 概率最大 概率大 概率最小 | ? | 冷位相 冷位相 冷位相 暖位相 | 最小值 最大值 最小值 最大值 |
https://en.wikipedia.org/wiki/Lists_of_earthquakes
http://blog.sciencenet.cn/blog-2277-970946.html
http://blog.sciencenet.cn/blog-2277-1226754.html
http://blog.sciencenet.cn/blog-2277-1276175.html
https://blog.sciencenet.cn/blog-2277-1279553.html
https://blog.sciencenet.cn/blog-2277-1316505.html
https://blog.sciencenet.cn/blog-2277-1336514.html
印度和巴基斯坦高温提供了特大地震周期的新的证据,特别最值得关注的是,增大青藏高原地震发生概率。
特大地震导致全球气温升高
图1 1880-2018年全球气温变化曲线
https://www.sohu.com/a/356959349_120451429
图1给出的全球气温最明显峰值为1896年、1900、1906、1915、1921、1926、1931、1937-1939、1941、1944、1952-1953、1957-1958、1961、1962、1963、1969年、1973年、1978年、1982年、1984、1989年、1991-1992年、1997-1998年、2002-2003、2005、2007、 2010年、2014-2016年。
表3给出了全球8.5级以上地震的年份为1896、1906、1922、1923、1938、1950、1952、1957、1960、1963、1964、1965、2004、2005、2007、2010、2011、2012年。总计18次8.5级以上地震,有13次发生在全球气温峰年,占72.22%。
数据分析表明,全球气温的升高包含特大地震释放的能量,所以全球气温的异常增高,可能是特大地震发生的前兆。特大地震释放的地下热能也是全球气温升高的原因。因为温室气体的上升是平稳的,所以温室气体所造成的气温上升与特大地震造成的气温上升截然不同,突发是后者的最大特征。
值得关注的是,在特大地震发生前几年,最热年就接连发生,为特大地震积蓄能量。例如,1998年20世纪最热年为2004-2007年特大地震群积蓄能量。
全球温度异常升高是特大地震发生的前兆。2017-2021年全球5级以上地震次数的成倍增加提供了新的证据。
https://blog.sciencenet.cn/blog-2277-1334352.html
月亮赤纬角极值导致8级以上地震发生
图2 是根据张家诚等人的公元前426年至公元1980年全球8级以上地震目录编绘的[14]。在月亮赤纬角最小时的1905-1906年、1923-1925年、1941-1942年、1959-1960年、1977-1979年,地球平均扁率变大,地球自转变慢;在月亮赤纬角最大时的1896-1897年、1913-1914年、1931-1932年、1949-1951年、1968-1970年,地球平均扁率变小,地球自转变快。8级以上地震高潮也有相应的约9年变化周期:1897- 1906- 1914- 1923- 1932- 1941- 1950- 1960- 1971- 1978年。应该说明的是,1960年5月22日智利南部发生9.5级地震,释放能量相当于8.5级地震的30倍。因此,在月亮赤纬角最小时的1959-1960年地震活动也很强烈。这是地震与地球扁率变化和自转速度变化相对应的原因,也是强潮汐激发地震火山活动的原因。
图2 1896-1978年8级以上地震分布(杨冬红等,2008)
全球气温变化的18.6年周期
我们在2008年发表的期刊论文中指出,当月亮在南(北)纬28.6度(月亮赤纬角最大值)时,高潮区在12小时后从南(北)纬28.6度向北(南)纬28.6度震荡一次[20],大气和海洋的南北震荡将产生巨大的能量交换并搅动深海冷水上翻到海洋表面降低气温。这是以18.6年为周期的潮汐南北震荡作用比其他周期的潮汐东西震荡作用更显著的原因。太阳在南北回归线时也会产生潮汐南北震荡运动。1998年是最热的年份,1995-1997年月亮赤纬角最小值产生的弱潮汐南北震荡是原因之一;自1998年以后,全球气温呈波动下降趋势,2005-2007年月亮赤纬角最大值产生的强潮汐南北震荡是原因之一。2014-2016年月亮赤纬角最小值有利于全球变暖。
我在2014年1月4日指出,2014年是全球极端灾害频发年,高温、干旱、雾霾和强震是主要灾害。关键原因是2000-2030年拉马德雷冷位相和2014-2016年月亮赤纬角最小值。
1947-1976年拉马德雷冷位相时期中,1959-1960年月亮赤纬角最小值导致了中国高温干旱和雾霾,1960年5月22日智利发生了近百年来最强的9.5级地震。我在2012年5月22日指出,2000年进入拉马德雷冷位相,2012年的厄尔尼诺正在到来,我们必须做好迎接拉马德雷冷位相灾害链的准备:一个极端炎热的夏季和极端寒冷的冬季。2013年的拉尼娜事件非常强烈,将重复2010年强拉尼娜事件的大致过程。2013年为太阳黑子峰年、2014-2016年为月亮赤纬角最小值、2015年可年发生厄尔尼诺事件,我们可能迎来又一个最热年新纪录,不过,频发的强震可以降低变暖规模。
http://blog.sciencenet.cn/blog-2277-573747.html
我们在2008年指出,1998年是最热的年份,1997-1998年20世纪最强的厄尔尼诺事件和1995-1997年月亮赤纬角最小值产生的弱潮汐南北震荡是主要原因。自1998年以后,全球气温呈波动下降趋势,2005-2007年月亮赤纬角最大值产生的强潮汐南北震荡、1998年6月至2000年8月的强拉尼娜事件(1999年全球强震频发)和2004-2007年印尼苏门答腊3次8.5级以上地震是主要原因。下一次月亮赤纬角最小值2014-2016年产生的弱潮汐南北震荡有利于气温相对升高和中国北方的干旱;而2009-2018年特大地震集中爆发却可能使气温下降。
http://news.hexun.com/2010-03-25/123112612.html
http://blog.sciencenet.cn/blog-2277-854442.html
http://blog.sciencenet.cn/blog-2277-789865.html
月亮赤纬角最大值形成大气和海洋潮汐南北震荡的最大振幅(南北纬28.6度之间),形成赤道和两极最强烈的冷热交换,导致赤道和低纬度地区变冷,两极和高纬度地区变暖;月亮赤纬角最小值形成大气和海洋潮汐南北震荡的最小振幅(南北纬18.6度之间,比最大值减少了三分之一还强),形成赤道和两极最微弱的冷热交换,导致赤道和低纬度地区变暖,两极和高纬度地区变冷。
https://blog.sciencenet.cn/blog-2277-864772.html
地震与厄尔尼诺的关系
统计表明,厄尔尼诺与火山地震活动密切相关。对1763年以来的19次强厄尔尼诺事件进行的统计表明,70%以上的厄尔尼诺事件都发生在太平洋地震活动年,特别是1900年以来的7次强厄尔尼诺事件几乎无一例外地全都出现在太平洋地震活动年[1],70%以上的厄尔尼诺年都为火山活跃年[2]。
1990年战淑芸根据地震统计资料得出赤道东太平洋海水增暖的年份全球地震增多的结论。1950~1979年期间,共有15个暖水年,其中12年均发生了8级以上强震,几率高达80%。
根据公元前2000~公元1979年重大地震统计结果,在厄尔尼诺年,地中海、土耳其至帕米尔、喜马拉雅东段、东南亚、中国及日本一带为地震多发区;厄尔尼诺后一年,美洲西部太平洋沿岸一带为地震多发区,与东西太平洋海面反向变化相关[1]。
http://blog.sciencenet.cn/blog-2277-516405.html
https://blog.sciencenet.cn/blog-2277-950127.html
过去四年史上最热 未来五年可能更热
图3 1960-2020年全球气温变化曲线
上图以1850年至1900年的工业化前全球平均气温为基线,图中黑色曲线代表观测到的全球年平均气温数值,红色区域和紫色区域分别代表此前和未来5年的预测值。(图片来源:英国气象局官网)
多家权威机构2019年2月6日确认,2015年至2018年是自100多年前有气温记录以来最热的四年,其中2018年是史上第四热年。英国气象局预测,2019年至2023年可能比过去四年还要热。
https://www.sohu.com/a/293667233_348961
特大地震和厄尔尼诺叠加导致全球气温升高
图2-3 给出的全球气温最明显峰值为1960-1965年、1969年、1976年、1979年、1982年、1986-1987年、1990-1992年、1997-1998年、2002- 2010年、2014-2016年。 其中,1963,1965,1969,1972,1976,1982,1986,1987,1991,1997,2002,2004,2006,2009,2014,2015年都发生了厄尔尼诺事件。所以,1960年5月22日智利9.5级特大地震对全球增温作用最显著,1963-1965年三次8.5级以上特大地震伴随1963年和1965年两次厄尔尼诺事件的增温作用也很明显,2004、2005、2007、2010年4次8.5级以上特大地震伴随2004年、2006年、2009年三次厄尔尼诺事件的增温作用也很突出。2011年和2012年的8.5级以上地震的增温作用,被2010-2011年强拉尼娜事件所抵消,形成一个显著的温度低谷。2016年的最高温归属于2014-2016年最强厄尔尼诺事件,能否导致下一次特大地震有待于时间来解答。
https://blog.sciencenet.cn/blog-2277-1335912.html
参考文献
杨学祥. 地球深部动力学说的意义与进展. 见:张中杰,高锐,吕庆田,等。中国大陆地球深部结构与动力学研究——庆贺藤吉文院士从事地球物理研究50周年。北京:科学出版社,2004。314-318。
杨学祥, 韩延本, 陈震, 乔琪源. 强潮汐激发地震火山活动的新证据[J]. 地球物理学报, 2004, 47(4): 616-621
YANG X X, HAN Y B, CHEN Z, et al. New Evidence of Earthquakes and Volcano Triggering by Strong Tides. Chinese Journal of geophysics (in Chinese), 2004, 47(4): 616~621
杨冬红, 杨学祥, 刘财. 海平面震荡与地震的关系研究. 世界地质, 2004, 23(4): 407-410.
YANG Dong-hong, YANG Xue-xiang, LIU Cai. Relation between the Oscillation of Sea Level and Earthquakes. Global Geology. 2004, 23(4): 407-410. – (in Chinese)
Yang Donghong , Wang Ye , Yang Xuexiang. The Spherical Pattern of Tide-isostasy Model and its Application. J. Geosci. Res. NE Asia, 2004, 7 (2): 188~195.
Yang Donghong , Wang Ye , Yang Xuexiang. The Spherical Pattern of Tide-isostasy Model and its Application. J. Geosci. Res. NE Asia, 2004, 7 (2): 188~195.
杨冬红,杨学祥. 海洋中和海洋边缘巨震是调节气候恒温器理论的检验. 西北地震学报. 2005, 27(1): 96
杨冬红, 杨学祥, 刘财. 海平面震荡与地震的关系研究. 世界地质, 2004, 23(4): 407-410.
杨学祥,杨冬红,安刚,沈柏竹。连续18年“暖冬”终结的原因。吉林大学学报(地球科学版),2005,35(地球探测科学与技术论文集):137-140
杨冬红,杨学祥。重大自然灾害周期及其动力机制。见:中国地球物理学会编, 中国地球物理2005.长春:吉林大学出版社,2005.355-356
林玎,杨学祥,杨冬红。2004年厄尔尼诺事件的理论预测和实践检验。海洋预报。2005,22(3):5-10
杨冬红,杨学祥。地震周期的数值估计。国际地震动态。2005,(12):37-43
杨学祥,杨冬红。旱涝周期和海震调温假说的新证据。西北地震学报。2005,27(4):400,398。
杨学祥. 流感和强震爆发的预测. 百科知识. 2005, (24): 13-14.
Yang Donghong , Yang Xuexiang,Chen Dianyou. Motive force of Qinghai-Tibet Plateau moving to east. J. Geosci. Res. NE Asia, 2005, 8 (1/2): 123~125.
Yang Donghong , Yang Xuexiang. Earthquakes, strong tide and global low temperature. J. Geosci. Res. NE Asia, 2005, 8(1/2): 126~132.
杨冬红,杨学祥。重大自然灾害周期及其动力机制。见:中国地球物理学会编, 中国地球物理2005.长春:吉林大学出版社,2005.355-356
杨冬红,杨学祥。“拉马德雷”冷位相时期的全球强震和灾害。西北地震学报。2006,28(1):95-96
杨学祥。有多少人关注灾害预警。中国社会报。2006年8月14日,第二版。
杨学祥,杨冬红。“太平洋十年涛动”冷位相时期的全球飓风等灾害。海洋预报。2006,23(3):30-35
杨学祥。全球变暖还是变冷。科技潮,2006,(9):20-22
http://cn.qikan.com/gbqikan/view_article.asp?id=kjch20060907&yuedu=1
全球变暖还是变冷. 作者:杨学祥.《科技潮》2006年9期 http://www.bestinfo.net.cn/wcm/bjkw/ztrd/ztrd_wz.jsp?art_id=39833&mag_id=153&year=2006&issue=9
杨冬红,杨学祥,刘财。2004年12月26日印尼地震海啸与全球低温。地球物理学进展。2006,21(3):1023-1027
Yang Dong hong,Yang Xxuexiang, Liu Cai. Global low temperature, earthquake and tsunami (Dec. 26, 2004) inIndonesia[J].Progress in Geophysics, 2006, 21(3): 1023~1027.
杨冬红, 杨学祥. 2007. 澳大利亚夏季大雪与南极海冰三个气候开关. 地球物理学进展, 22(5): 1680-1685.
Yang D H, Yang X X. 2007. Australia snow in summer and three ice regulators for El Nino events. Progress in Geophysics (in Chinese), 22(5): 1680-1685.
杨学祥,杨冬红。2007:拉马德雷冷位相时期的灾害链。见:高建国主编,苏门答腊地震海啸影响中国华南天气的初步研究――中国首届灾害链学术研讨会论文集。气象出版社, 200-204。
杨冬红,杨学祥。流感世界大流行的气候特征。沙漠与绿洲气象。2007,1(3):1-8
杨冬红,杨学祥。潮汐变化周期及其相关灾害链。见:高建国主编,苏门答腊地震海啸影响中国华南天气的初步研究——中国首届灾害链学术研讨会论文集。气象出版社,2007:205-209。
杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.
Yang Dong-hong. 2009.Tidal Periodicity and its Application in Disasters Prediction[D]. [Ph. D.thesis]. Changchun:College of Geo-exploration Science and Technology, Jilin University.
杨冬红,杨德彬。日食诱发厄尔尼诺现象的热-动力机制。世界地质。2010,29(4):652-657.YangDH,Yang D B. Thermal dynamic mechanism of ElNino induced by solareclipse.GlobalGeology (in Chinese), 2010, 29 (4):652-657.
杨学祥,杨冬红。拉马德雷冷暖位相转换说值得研究。日期:2010-01-12来源:文汇报。12版:科技文摘。
YANG Donghong, YANG Debin, YANG Xuexiang. Global influenza in cold phase of Pacific Decade Oscillation. Global Geology, 2010,13(2):104-107
杨冬红,杨德彬,杨学祥. 2011. 地震和潮汐对气候波动变化的影响[J]. 地球物理学报, 54(4):926-934
Yang D H,Yang D B, Yang X X, The influence oftidesandearthquakes in globalclimatechanges. Chinese Journal of geophysics (in Chinese),2011, 54(4): 926-934
杨学祥。透过专家看世界 专家观点仅仅是某专业的观点。格式:PDF 页数:15 上传日期:2012-08-25 02:42:37
https://www.doc88.com/p-703920132830.html
杨冬红,杨学祥. 全球气候变化的成因初探. 地球物理学进展. 2013, 28(4): 1666-1677. Yang X X, Chen D Y. Study oncause of formation in Earth’s climatic changes. Progress in Geophysics (inChinese), 2013, 28(4): 1666-1677.
杨冬红, 杨学祥.2013.a 地球自转速度变化规律的研究和计算模型. 地球物理学进展, 28(1):58-70。
Yang D H, Yang XX. 2013a. Study and model on variation of Earth’s Rotation speed. Progress inGeophysics (in Chinese), 28(1):58-70.
杨学祥,杨冬红。2014-2016年月亮赤纬角最小值时期雾霾进入高发期。2013天灾预测总结研讨学术会议论文集。2013,万方数据库。
杨冬红, 杨学祥. 北半球冰盖融化与北半球低温暴雪的相关性[J]. 地球物理学进展, 2014, 29(2):610-615. YANG Dong-hong, YANG Xue-xiang. Studyon the relation between ice sheets melting and low temperature in NorthernHemisphere. Progress in Geophysics. 2014, 29 (1): 610~615.
杨学祥,杨冬红。2014年1-2月潮汐组合与雾霾对应的检验。2014天灾预测学术研讨会议论文集。2014,224-237,万方数据库。
杨学祥,杨冬红。2013年中国雾霾高发的气象原因初探。科学家. 2014, (3): 90-91.YANG Xue-xiang,YANGDong-hong.MeteorologicalAnalysis of ReasonsCausing China'sFrequent SmogWeatherin 2013. Technology andlife. 2014, (3): 90-91.
曾佐勋,刘根深,李献瑞,贺赤诚,杨学祥,杨冬红。鲁甸地震(Ms6.5)临震预测、中期预测 及中地壳流变结构。DOI::10.3799/dqkx.2014.159。地球科学。2014,39(12):1751-1762.
杨冬红, 杨学祥. 灾害链警钟:长白山火山喷发和小冰期相互作用及其危害. 第三届中国防灾减灾之路学术研讨会:纪念唐山抗震40周年暨平安京津冀学术研讨会论文集。2016:209-215.
杨冬红, 杨学祥. 直面巨灾威胁:气象-地震-经济超级灾害链周期及其预测方法. . 第三届中国防灾减灾之路学术研讨会:纪念唐山抗震40周年暨平安京津冀学术研讨会论文集。 2016:201-208.
杨冬红, 杨学祥. 自然灾害的周期研究及其成因探讨. 黑龙江气象. 2017.第34卷第4期P13-15
2004-2018年:全球进入特大地震频发期
已有 7089 次阅读 2008-5-10 11:08 科学网
http://blog.sciencenet.cn/blog-2277-24736.html
http://blog.sciencenet.cn/blog-2277-791640.html
http://blog.sciencenet.cn/blog-2277-913395.html
http://blog.sciencenet.cn/blog-2277-1100479.html
https://blog.sciencenet.cn/blog-2277-1336514.html
相关报道
印度遇122年来最高温!2022极端高温季开始:今年气候有多可怕?
2022-04-28 23:34:29
据CNN于2022年4月28日报道,印度正在经历历史上极端罕见的高温天气,而根据印度气象局(IMD)的数据,未来或将会更热!
印度遭遇122年来最高温
今年印度高温季来得比正常年份早了一个月,3月份印度的最高温度已经达到了38℃,而平均温度则为33.10℃,创下了印度122年来同期最高温纪录,比2010年的高温纪录略高一些(33.09℃)。
本月26日,印度城市巴尔默已经记录了45.1℃的高温。极端气候问题专家马克西米利亚诺·埃雷拉(Maximiliano Herrera)称,同一天巴基斯坦的一个气象站以47℃打破了北半球同期最高气温的纪录。
据印度科学与环境中心(CSE)的数据,自3月11日以来,热浪已经影响了印度15个邦和联邦领土,“拉贾斯坦邦和中央邦是受热浪影响最严重的邦,在此期间各有25天热浪和严重热浪天气。
https://www.163.com/dy/article/H631ANM505322ICO.html?f=post1603_tab_news
研究:印度气候变暖速度加剧 2040年或面临重灾
2019-01-22 10:52:39 来源: 中新网
中新网1月21日电 据“中央社”报道,日前,印度气象局的研究显示,印度过去19年来气温显著升高,其中2000年是导致气候变暖的转折点,进而引发近年的天灾。如果不控制温室气体排放,印度到2040年将面临灾难性后果。
印度气象局(IMD)最新《印度2018年气候声明》报告指出,印度近年天然灾害明显增加,包括2018年克勒拉省的洪水及北部出现的沙尘暴,都与2000年以来的气温显著升高有关。印度气象局这份报告把19年来印度气温明显增加及气候变化联系起来,发现印度的变暖趋势与全球变暖模式类似。
根据世界气象组织(WMO)的《2018年全球气候概况》报告,地表气温从2000年以来出现气温上升最快趋势,20个“最热”的一年都出现在过去22年间。来自印度政府及独立机构的科学家警告,如果不控制温室气体排放,预计到2040年,印度的气温将上升1.5摄氏度,可能影响印度的农业,对沿海地区也将造成危害,且将使一些物种灭绝。
据报道,印度上述报告与联合国政府间气候变迁问题小组(IPCC)的《1.5摄氏度全球变暖》报告一致。如果不尽快控制排放,联合国报告的共同作者、印度气候专家罗伊说,印度可能面临严重后果,其中大城市会出现严重的热压力、造成高度空气污染、因海平面上升导致有盐的海水入侵沿岸致使土壤盐化,同时高山生态系统也易受天灾影响。科学家指出,即使是印度目前的变暖速度,也将导致森林及其他脆弱生态系统发生许多变化,只是这些变化尚未被文献记录。
http://www.weather.com.cn/chongqing/mtttq/01/3090977.shtml
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 23:47
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社