||
挑战NASA:极端洪水发生在2030还是2023?
吉林大学:杨学祥,杨冬红
NASA预计:受月球“摆动”周期效应影响,2030年美国沿海洪水将激增,伦敦可能永久淹没。
月亮影响潮汐,但月亮的拉力每年都不相等。事实上,月球在其轨道上有一个“摆动”,以18.6年为一个周期,略微改变了它相对于地球的位置。
在半个周期中,月球会抑制地球上的潮汐,导致高潮更低,低潮更高。根据美国宇航局(NASA)的说法,在周期的另一半,潮汐会被放大,涨潮会更高,低潮会更低。
我们目前正处于周期的大潮放大阶段。下一个潮汐放大周期,将在本世纪30年代中期开始。研究人员发现,到那时,全球海平面将上升到足以让那些高于正常水平的涨潮特别麻烦。
近日NASA利用新开发的软件绘制了一幅动态地图,地图详细地展现了未来几十年海平面的上升情况,为预测未来冰川融化、跨洋洋流的变化提供极具说服力的证明。在所有的变化里面,最明显的就是英国伦敦部分地区可能会在2030年被淹没,这一发现,联合到最近世界各地的洪水频发,引发了科学界震动。目前主流的说法是引发2030年的极端洪水侵袭,主要是因为海平面上升和月球的周期性变化。而海平面上升有多个因素,当然除了全球变暖、气候原因等,月球的周期性变化也会引起海平面上升。
NASA研究发现,9年后,月球活动周期将会让海平面上升,美国沿海地区将会在2030年中期,面临涨潮洪水的侵袭。根据CNN(也就是美国有线电视新闻网)的相关报道,气候变迁导致海平面上升是近几年的趋势,而且越来越明朗。夏威夷大学的海平面变化自然小组研究后发现,2030年代中期海平面上升得更快。这都与月球每18.6年循环一次的周期有关。
https://t.qianzhan.com/caijing/detail/210714-1bca17c8.htm
http://www.yidianzixun.com/article/0YPS03OF?s=yunos
https://www.163.com/v/video/VHVR467VQ.html?f=post2020_dy_recommends
https://www.163.com/dy/article/GHMLC6QU0543OQ0U.html
https://blog.sciencenet.cn/blog-2277-1326866.html
准确的说,受月球“摆动”周期效应影响,2023-2025年和2041-2043年月亮赤纬角最大值将使地球扁率变小,潮汐南北震荡的幅度变大,对应中国北方的洪涝和低温;2032-2034年和2050-2052年月亮赤纬角最小值将使地球扁率变大,潮汐南北震荡幅度变小,对应中国北方的干旱和高温。月亮近地潮和日月大潮周期性增强或减弱这一效应。
按照这一理论,美国沿海洪水激增,伦敦可能永久被淹没,应该发生在2023-2025年和2041-2043年,而不是2030年。
全球旱涝的18.6年周期
在澳大利亚气象学家E. 布赖恩特编著的《气候过程和气候变化》中,有关气候现象循环的记录75项,与潮汐周期相同的有66项,占88%,表明潮汐是影响气候现象循环的主要因素。其中,有5项的周期为18.6年,1项的周期为19年(见表1)。
表1 气候现象循环的18.6年周期
现象 周期/年 |
加拿大平原干旱, 1583- 18.6 |
美国大平原干旱, 1805- 18.6 |
中国北部干旱, 1582- 18.6 |
巴塔哥尼亚安第斯山干旱, 1606- 18.6 |
尼罗河谷干旱, 622- 18.6 |
副热带高压的纬度范围 19 |
中国北方旱涝规律:18.6年周期
18.6年是典型的潮汐周期,月亮轨道与地球赤道之间的夹角称为月亮赤纬角,最大值在28.5度-18.5度之间变化,变化周期为18.6年。
中国科学院寒区旱区环境与工程研究所蓝永超研究员根据代表黄河上游流域径流动态变化的唐乃亥水文站1920年至2004年的径流系列统计资料,以及此间数十个气象站四十余年的降水观测数据得出结论,从上世纪二十年代初到九十年代,黄河大体上经历了五个枯水期和四个丰水期。每个丰、枯水期段持续的时间长短不一,枯水期持续时间为四至十五年,平均为九年;丰水段持续时间为七至十四年,平均为九点二五年。黄河上游每个丰、枯水周期平均持续时间基本相同,一个完整的丰枯循环周期大约在十八年左右。
郭增建等人在1991年提出月亮潮迫使地球放气的观点,当月亮赤纬角最小时,它的直下点远离中国主大陆,所以在主大陆引起的地壳鼓起就小,因之地下放出的携热水汽就少,这样就不易诱使热带气团与高纬冷气团在中国大陆上相碰,因之雨量减少,会形成干旱,历史上,月亮赤纬角最小时的1941-1943年(河南大旱)、1959-1960年(山西大旱)、1977-1978年(山西、长江中下游大旱)、1995-1997年(华北、辽宁、吉林等地连续4-5年大旱)中国北方都发生了大旱[5];月亮赤纬角最大时的1932年(松花江大水)、1933年和1935年(黄河特大水)、1951年(辽河大水)、1969年(松花江大水)、1986年(辽河大水)中国北方都发生了大水(见表2)。
潮汐调温效应
2000年查尔斯·季林(Keeling)提出,强潮汐把海洋深处的冷水带到海面,使全球气候变冷,形成的全球气候波动周期大约为1800年。季林认为,地球、月亮和太阳相对位置的变化会引起潮汐强度的逐渐变化,其周期与邦德提出的“气候周期”是一致的。当日、地、月排成一线且相互距离最小时,日月引潮力相互加强而变为最大,地球海洋潮汐规模也最大,这时就有更多来自海洋深处的冷水被带到海面。这些冷水可以冷却海洋上的空气。当日、地连成的直线与月、地连成的直线相互垂直时,太阳潮汐减弱月球潮汐,使地球海洋潮汐变小,这时海洋深处的冷水很难被带到海面,世界就变得暖和。据季林的计算,大约在1425年即小冰期的末期,潮汐达到了最大值,从那以后逐渐减弱,直到3100年潮汐又达到最大值。这个周期是过去1万年气候变迁的主要动力。这个效应使地球的温暖期从小冰期末期一直持续到24世纪,而后随着潮汐的增强,地球的气候将逐渐变冷。
潮汐高低潮还有200年左右的明显周期变化。其中,1425年、1629年两次峰值对应小冰期时期,1770年的峰值对应18世纪的低温,1974年的峰值对应20世纪70年代的气候变冷。特别是54-56年周期(太平洋十年涛动周期)和18.6年周期(月亮赤纬角极大值变化周期),在全球气候变化中有非常明显的作用。
关注2016年最热预测
我们在2008年撰文指出,1998年是最热的年份,1997-1998年20世纪最强的厄尔尼诺事件和1995-1997年月亮赤纬角最小值产生的弱潮汐南北震荡是主要原因。自1998年以后,全球气温呈波动下降趋势,2005-2007年月亮赤纬角最大值产生的强潮汐南北震荡、1998年6月至2000年8月的强拉尼娜事件(1999年全球强震频发)和2004-2007年印尼苏门答腊3次8.5级以上地震是主要原因。下一次月亮赤纬角最小值2014-2016年产生的弱潮汐南北震荡有利于气温相对升高和中国北方的干旱;而2009-2018年特大地震集中爆发却可能使气温下降。
http://news.hexun.com/2010-03-25/123112612.html
http://blog.sciencenet.cn/blog-2277-854442.html
http://blog.sciencenet.cn/blog-2277-789865.html
我在2012年5月22日指出,2000年进入拉马德雷冷位相,2012年的厄尔尼诺正在到来,我们必须做好迎接拉马德雷冷位相灾害链的准备:一个极端炎热的夏季和极端寒冷的冬季。2013年的拉尼娜事件非常强烈,将重复2010年强拉尼娜事件的大致过程。
2013年为太阳黑子峰年、2014-2016年为月亮赤纬角最小值、2015年可年发生厄尔尼诺事件,我们可能迎来又一个最热年新纪录,不过,频发的强震可以降低变暖规模。
http://blog.sciencenet.cn/blog-2277-573747.html
http://blog.sciencenet.cn/blog-2277-711459.html
我在2014年7月21日指出,研究表明,厄尔尼诺是热事件,可导致全球平均气温升高;拉尼娜是冷事件,可导致全球平均温度降低。科学界忽视了影响全球气温的另外两个重要因素:海洋及其边缘8.5级和大于8.5级的海震,其集中爆发期的周期为55年;月亮赤纬角极大值在18.6度-28.6度之间变化,其周期为18.6年。
当月亮在南(北)纬28.6度(月亮赤纬角最大值)时,高潮区在12小时后从南(北)纬28.6度向北(南)纬28.6度震荡一次,大气和海洋的快速南北运动将产生巨大的能量交换并搅动深海冷水上翻到海洋表面降低气温;当月亮在南(北)纬18.6度(月亮赤纬角最小值)时,高潮区在12小时后从南(北)纬18.6度向北(南)纬18.6度震荡一次,震荡幅度减少了三分之一,导致变冷作用减弱。这是以18.6年为周期的潮汐南北震荡作用比其他周期的潮汐东西震荡作用更显著的原因。
1998年是有气象记录以来最热年份,它不仅与1997-1998年最强的厄尔尼诺事件有关,也与1995-1997年月亮赤纬角最小值有关。
2014-2016年为月亮赤纬角最小值时期,2014年正在发展的厄尔尼诺有可能使其成为最热年。
http://blog.sciencenet.cn/blog-2277-813332.html
http://blog.sciencenet.cn/blog-2277-789865.html
2014年8月史上最热,都是2014年月亮赤纬角最小值惹的祸。
http://blog.sciencenet.cn/blog-2277-829906.html
http://blog.sciencenet.cn/blog-2277-846865.html
我们在2015-8-3 10:33指出,2014年最热,2015年更热,2016年刷新。
http://blog.sciencenet.cn/blog-2277-910209.html
我们在2014年撰文指出,1998年是最热的年份,1995-1997年月亮赤纬角最小值产生的弱潮汐南北震荡是原因之一;自1998年以后,全球气温呈波动下降趋势,2005-2007年月亮赤纬角最大值产生的强潮汐南北震荡是原因之一。当月亮在南(北)纬28.6度(月亮赤纬角最大值)时,高潮区在12小时后从南(北)纬28.6度向北(南)纬28.6度震荡一次,大气和海洋的南北震荡将产生巨大的能量交换并搅动深海冷水上翻到海洋表面降低气温。这是以18.6年为周期的潮汐南北震荡作用比其他周期的潮汐东西震荡作用更显著的原因。太阳在南北回归线时也会产生潮汐南北震荡运动。2014-2016年月亮赤纬角最小值可能导致中国干旱和全球高温(杨冬红等,2008)。
谁是谁非9年内见分晓:2017年变冷,2025年最冷
尽管我们在2008年就预测了2014-2016年最热,但预测的根据不是由于温室气体排放,而是月亮赤纬角最小值,与气象主流完全不同。这一结论的正确性,将在9年后得到验证。这一验证时间并不长,大多数人都可以看到这一天。
我们在2014年3月26日指出,2014-2016年全球最热年 2023-2025年全球最冷年:
2014年是全球极端灾害频发年,高温、干旱、雾霾和强震是主要灾害。关键原因是2000-2030年拉马德雷冷位相和2014-2016年月亮赤纬角最小值。
2014-2016年月亮赤纬角极小值减小潮汐南北震荡幅度,导致高温、干旱、雾霾和强震,2013年的前兆值得关注。
2023-2025年月亮赤纬角极大值增大潮汐南北震荡幅度,导致低温和强震,2000-2030年拉马德雷冷位相增强制冷作用。
http://blog.sciencenet.cn/blog-2277-779229.html
我们在2015年1月25日指出,2015年的警钟:厄尔尼诺和最热年可能重现江湖。
2014-2016年为月亮赤纬角最小值时期,2015年高温、干旱继续威胁我国南方、北方地区,新一波厄尔尼诺将增加灾害的强度,必须高度重视,及时监测,积极预防。
http://blog.sciencenet.cn/blog-2277-861959.html
我们在2016年11月21日指出,研究与预测:2016年恐再破最热一年纪录。
http://blog.sciencenet.cn/blog-2277-1015744.html
https://blog.sciencenet.cn/blog-2277-1023429.html
结论
受月球“摆动”周期效应影响,2023-2025年和2041-2043月亮赤纬角最大值将使地球扁率变小,潮汐南北震荡的幅度变大,对应中国北方的洪涝和低温;2032-2034年和2050-2052月亮赤纬角最小值将使地球扁率变大,潮汐南北震荡幅度变小,对应中国北方的干旱和高温。月亮近地潮和日月大潮周期性增强或减弱这一效应。
按照这一理论,美国沿海洪水激增,伦敦可能永久被淹没,应该发生在2023-2025年和2041-2043年,而不是2030年。
由旱涝18.6年周期到“潮汐调温效应”,2014-2016年连续3年最热纪录预测,是该理论最有效的预测实践。
参考文献
1. 杨冬红, 杨学祥,刘财.2004年12月26日印尼地震海啸与全球低温. 地球物理学进展, 2006, 21(3):1023~1027
Yang D H, Yang X X, Liu C. Globallow temperature, earthquake and tsunami (Dec. 26, 2004) in Indonesia. Progress in Geophysics (in Chinese),2006, 21(3): 1023~1072
2. Keeling C D, Whorf T P. The 1800-year oceanic tidal cycle: A possible cause of rapid climate change [J]. PNAS, 2000, 97(8): 3814-3819.
3. 杨冬红, 杨学祥.2008. 全球变暖减速与郭增建的“海震调温假说”. 地球物理学进展, 23(6): 1813~1818.
YANG D H, YANG X X. 2008. The hypothesis of theocesnic earthquakes adjusting climate slowdown of global warming. Progress in Geophysics(in Chinese), 23(6): 1813~1818
4. 杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.
Yang Dong-hong. 2009.Tidal Periodicity and its Application in Disasters Prediction[D]. [Ph. D.thesis]. Changchun:College of Geo-exploration Science and Technology, Jilin University.
5. 杨冬红,杨德彬,杨学祥. 2011. 地震和潮汐对气候波动变化的影响[J]. 地球物理学报, 54(4):926-934
Yang D H, Yang DB, Yang X X. 2011. Theinfluence of tides and earthquakes in global climate changes[J]. ChineseJournal of geophysics (in Chinese), 54(4):926~934
6. 杨冬红, 杨学祥.2013.a 地球自转速度变化规律的研究和计算模型. 地球物理学进展, 28(1):58-70。
Yang D H, Yang XX. 2013a. Study and model on variation ofEarth’s Rotation speed. Progress inGeophysics (in Chinese), 28(1):58-70.
7. 杨冬红,杨学祥. 2013. 全球气候变化的成因初探. 地球物理学进展. 28(4): 1666-1677.
Yang D H, Yang XX. 2013b. Study oncause of formation in Earth’s climatic changes. Progress in Geophysics (inChinese), 28(4): 1666-1677.
8. 杨冬红, 杨学祥.2014, 北半球冰盖融化与北半球低温暴雪的相关性[J]. 地球物理学进展, 29(2): 610-615.
YANG Dong-hong,YANG Xue-xiang. 2014,The relation between ice sheets melting and low temperature in NorthernHemisphere. Progress in Geophysics, 29(2): 610-615. DOI: 10.6038/pg20140218
9. 杨学祥, 陈殿友.1998, 地球差异旋转动力学. 长春:吉林大学出版社, 2, 99~104, 196~198
Yang X X, Chen D Y. 1998,Geodynamics of the Earth’s differential rotation and revolution (in Chinese). Changchun: Jilin University Press, 2, 99~104,196~198
10. 杨学祥, 韩延本,陈震等.2004, 强潮汐激发地震火山活动的新证据. 地球物理学报, 47(4): 616~621
YANG X X, HAN Y B, CHEN Z, et al. 2004. New Evidence of Earthquakes andVolcano Triggering by Strong Tides. ChineseJournal of geophysics (in Chinese), 47(4):616~621
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-28 09:31
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社