||
第四纪大冰期形成的原因及规律:我们离冰期有多远?
吉林大学:杨学祥,杨冬红
第四纪大冰期和末次冰期
地球在第三纪末气候转冷,第四纪初期,寒冷气候带向中低纬度地带迁移,使高纬度地区和山地广泛发育冰盖或冰川。这一时期大约始于距今200-300万年前,结束于1—2万年前,规模很大。在欧洲冰盖南缘可达北纬50°附近;在北美冰盖前缘延伸到北纬40°以南;南极洲的冰盖也远比现在大得多。包括赤道附近地区的山岳冰川和山麓冰川,都曾经向下延伸到较低的位置。
末次冰期是于第四纪的更新世内发生的最近一次冰河时期。末次冰期约于11万年前开始,于前9600-9700年完结。于这段期间,曾出现几次冰川的前进及消退,最盛期发生于约1.8万年前。
米兰科维奇循环的天文冰期理论
米兰科维奇理论即是从全球尺度上研究日射量与地球气候之间关系的天文理论。该理论认为,北半球高纬夏季太阳辐射变化(地球轨道偏心率、黄赤交角及岁差等三要素变化引起的夏季日射量变化)是驱动第四纪冰期旋回的主因。
米氏理论之所以能逐渐被接受,主要归功于可用来研究古气候变化的地质资料的获得,其中包括深海岩芯、珊瑚礁、花粉、树木年轮、冰芯等。20世纪60年代,在巴巴多斯岛、夏威夷和新几内亚进行的珊瑚礁研究表明,在距今约8万年、10. 5万年和12. 5万年时期,冰原尺寸缩小,海平面上升到较高水平,且存在一个2. 0~2. 5万年的周期,这与米兰科维奇计算的冰川曲线结果一致。
另外,Emilinani从深海岩芯得到的主要反映冰原尺寸变化的氧同位素记录也提供了此类信息。CL IMAP计划,结合几种定年技术,采用功率谱分析等数学方法进行的研究表明,至少地球气候变化的某些周期类型与地球轨道变化有关。1978年, Pi2sias从深海岩芯中测量了碳酸钙、硅、浮游动植物残骸在巴拿马盆地的累积率。硅的累积率反映近地表特殊类别的生物群落的大小,其值随着气候变化而增加或减小。碳化率则反映了底层水对累积的碳酸盐的溶解能力。Pisias通过功率谱分析,从整个气候记录中抽取最强的周期特征,发现碳酸盐和硅的累积率分别表现出一个2. 3万年和10万年周期,与岁差周期和轨道偏心率周期接近。
另外,这些周期也出现在另一站点岩芯的氧同位素记录中。应当指出的是, 在此类研究中, 最具可信度的要属Hays等的研究,他们获取了跨度为45万年的深海岩芯记录,发现了2. 3万年、4. 2万年和10万年周期的气候变化;并认为,在过去的35万年里,这些周期一般来说都与适当的轨道周期步调一致。至此,越来越多的证据支持米氏理论,地球轨道变化影响气候的观点开始被接受。
图1 全球气候变化的地球公转轨道偏心率10万年和40万年周期
行星公转轨道偏心率控制行星大气密度和温度
我们在2006年撰文指出, 大气层对行星具有保温作用。当轨道偏心率较大的行星向太阳靠近时,太阳风和太阳辐射将一部分大气物质吹走,形成背光的“气尾”;当行星向远离太阳的方向运动时,“气尾”收缩。行星每靠近太阳一次,就失掉相当多的大气质量。
我们在2006年发现,近日行星水星、火星、地球、金星的轨道偏心率分别为0.206、0.093、0.017、0.007,大气浓度分别为极其稀薄、稀薄、标准、浓密。两者成反比的原因是,较大的轨道偏心率使行星在接近太阳时像彗星一样丢失一部分大气。地球轨道偏心率在冰期时增大为0.0607,使大气浓度和二氧化碳浓度变低,降低了对地球表面的保温作用,导致10万年周期致冷作用的增强。
由于地球轨道偏心率10万年周期项振幅不到近日点进动2万年周期项振幅的一半,其引起10万年冰期周期的作用受到质疑。大气浓度变化能增强10万年周期作用,给出10万年冰期周期的合理解释。
事实上,近日行星中,水星与火星的公转轨道偏心率最大,分别为0.206和0.093,大气密度分别为极其稀薄和稀薄,表面温度也最低,水星平均地表温度为179℃(最高为427℃,最低为零下173℃,因为距离太阳最近),火星表面平均温度零下55℃。地球的偏心率为0.017,处于中等水平,大气密度标准,表面平均温度为15℃。金星的偏心率最小,为0.007,其表面的平均温度高达462°C,是太阳系中最热的行星。近日行星的数据表明,天文冰期理论得到精准的认证(近日行星公转轨道偏心率大时,大气稀薄,表面温度低)。
近日行星的大气密度与其轨道偏心率成反比,因此,近日行星中轨道偏心率大的行星大气散失比较多,大气非常稀薄。大气层可以保持地表的气温,大气的流失降低地表气温,这是10万年冰期周期与地球轨道偏心率10万年变化周期对应的原因,地球轨道偏心率变化范围为0.017~0.067,在偏心率最大时对应冰期的出现。
http://blog.sciencenet.cn/blog-2277-436350.html
根据米兰科维奇循环的天文冰期理论:火星目前处于轨道偏心率较大的大冰期时期,地球处于轨道偏心率较小的间冰期时期,金星处于轨道偏心率最小的极热期时期。
轨道偏心率较大的行星向太阳靠近时产生的大气丢失,是冰期产生的根本原因。大气稀薄不仅是气温低的原因,也是与冰期伴随的生物灭绝的原因。而地球公转轨道偏心率变化周期为10万年和41.3万年等,于0.005至0.058之间变化(见米兰科维奇循环)。
在八大行星中金星的轨道最接近圆形,偏心率最小,仅为0.006811。火星和地球10万年后也有可能变为金星目前状态,目前没有成为金星目前状态的可能。
火星的轨道偏心率最大,为0.093,地球的偏心率为0.017,金星的偏心率为0.007。在10万年的周期内,地球既不能变为金星,也不能变为火星,地球上的生命也不会完全灭绝。
科学的缺席和科普的误读,必须得到及时的纠正。
预测未来
2万年前地球公转轨道偏心率达到极大值0.02,形成了末次冰期。根据10万年周期,距今8万年之后,下一次冰期可能发生。
地球最近的两个公转轨道偏心率极小值发生在4万年前和14万年前,对应两个温暖的间冰期或冰退,大约在距今6万年之后,地球公转轨道偏心率又达到极小期,可能形成新的变暖峰值。
参考文献
1. Frakes. L.A. and Kemp, E.M., 1972. Influence of continental positions on Early Tertiary climate. Nature, 240: 97~100.
2. Frakes. L.A. and Kemp, E.M., 1973. Palaeogene continental positions and evolution of climate. In: D.H. Tarling and S.K. Runcorn (Editors), Implications of Continental Drift to the Earth Sciences, 1. Academic Press, London, pp. 539~559.
3. Frakes, L. A., 1979. Climates throughout geologic time. Elsevier Scientific Publishing Company, Amsterdam—Oxford—New York, pp. 182, 192, 200, 223, 315.
4. Kaneps, A., 1970. Late Neogene Biostratigraphy (Planktonic Foraminifera) Biogeography and Depositional History. Ph. D. Dissertation, Columbia University, New York, N.Y., pp. 299~328.
5. Kennett, J. P., Burns, R. E. and Andrews, J. E. et al., 1972. Australian-Antarctic continental drift, palaeocirculation changes and Oligocene deep-sea erosion. Nature, 239: 51~55
6. Kennett, J. P., Houtz, R. E. and Andre, P. B., 1975. Antarctic glaciation and the development of the Circum-Antarctic Current. In: Initial Reports of the Deep Sea Drilling Project, 29. U.S. Government Printing Office, Washington, D.C., pp. 1155~1170
7. Van Andel, T. H., Heath, G.R. and Moore, T.C., 1975. Cenozoic History and Paleooceanography of the Central Equatorial Pacific Ocean. Geol. Soc. Am., Mem., 143: 134 pp.
8. 杨冬红,杨学祥。全球变暖减速与郭增建的“海震调温假说”。地球物理学进展。2008,23 (6): 1813~1818
Yang Donghong, Yang Xxuexiang. Thehypothesis of the oceanic earthquakes adjusting climate slowdown of global waring[J]. Progress in Geophysics, 2008, 23(6): 1813~1818.
9. 杨学祥, 陈殿友.1998, 地球差异旋转动力学. 长春:吉林大学出版社, 2, 99~104, 196~198
10. 杨学祥. 2003, 太平洋环流速度减慢的原因. 世界地质, 22(4): 380-384.
Yang Xuexiang. The reason for thevelocity in Pacific circumfluence becoming slower. Global Geology[J], 2003, 22(4):380-384.
11. 杨学祥, 陈殿友. 构造形变、气象灾害与地球轨道的关系. 地壳形变与地震,2000,20(3):39~48
12. 杨冬红,杨学祥,刘财。2004年12月26日印尼地震海啸与全球低温。地球物理学进展。2006,21(3):1023-1027
13 .杨冬红, 杨学祥.2007a, 澳大利亚夏季大雪与南极海冰三个气候开关. 地球物理学进展, 22(5): 1680~1685
Yang Donghong, Yang Xxuexiang.Australiasnowin summer and three ice regulators for El Nino [J]. Progress in Geophysics, 2007,22(5):1680~1685.
14.杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.
15. 杨冬红,杨德彬,杨学祥. 2011. 地震和潮汐对气候波动变化的影响[J]. 地球物理学报, 54(4):926-934
Yang D H,Yang D B, Yang X X, The influence oftidesandearthquakes in globalclimatechanges. Chinese Journal ofgeophysics(inChinese),2011, 54(4): 926-934
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-14 13:21
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社