全球变化- 杨学祥工作室分享 http://blog.sciencenet.cn/u/杨学祥 吉林大学地球探测科学与技术学院退休教授,从事全球变化研究。

博文

海洋酸化、冰河时代与生物灭绝:温室气体循环路线图

已有 3239 次阅读 2021-9-5 15:29 |个人分类:全球变化|系统分类:论文交流

  海洋酸化、冰河时代与生物灭绝:温室气体循环路线图

                            吉林大学:杨学祥,杨冬红

 

       

海洋酸性上升导致水母大量滋生泛滥成灾

 

  海洋专家发出警告说,随着世界海洋的酸性不断升高,水母的数量正在迅速增加,数量创纪录的水母很快就会在英国海岸泛滥成灾。

  这一警告出自一份有关海洋酸性的报告,该报告主要着眼于燃烧化石燃料对地球产生的副作用。研究显示,更高水平的二氧化碳进入大气层不仅会引起气候变化,而且会使海洋的酸性更大。海洋生物学家表示,从工业革命开始以来,海洋酸度已经上升30%。在墨西哥坎昆举行的气候变化峰会期间,联合国环境规划署公布了这份最新报告。该报告发出警告说,海洋酸化使珊瑚礁和甲壳类动物更难形成外骨骼,这严重威胁着以这些海上生物为食的更大动物。

有壳动物的数量迅速减少,将导致水母数量直线上升。由英国普利茅斯大学的卡罗尔·特里博士所写的这份报告上说:“科学家暂时认为海洋酸化与水母数量增加和鱼类多样性改变有关。”水母不受海洋酸化影响。随着其他动物不断减少,水母将充斥整个海洋。近几年,地中海地区的水母数量在迅速增加。一些海洋学家表示,海洋的化学性质变化是导致水母增加的主要原因。

http://www.cnxz.com.cn/newscenter/2010/2010121340907.shtml

我们的研究表明,海洋酸化不仅导致海洋生物灭绝,而且带来气候变冷的冰河期。

 

两次生物大灭绝都与气候变冷有关

 

第一次物种大灭绝发生在4亿4千万年前的奥陶纪末期,由于当时地球气候变冷和海平面下降,生活在水体的各种不同的无脊椎动物便荡然无存。

在距今4.4亿年前的奥陶纪末期,发生地球史上第一次物种灭绝事件,约85%的物种灭亡。古生物学家认为这次物种灭绝是由全球气候变冷造成的。在大约4.4亿年前,撒哈拉所在的陆地曾经位于南极,当陆地汇集在极点附近时,容易造成厚的积冰——奥陶纪正是如此。大片的冰川使洋流和大气环流变冷,整个地球的温度下降,冰川锁住水,海平面降低,原先丰富的沿海生态系统被破坏,导致85%的物种灭绝。

第二次大灭绝发生在3.75亿年前,也就是过了不到1亿年,这次灭绝了一半的海洋生物。海洋生物诡异般地大规模消失了,相比之下,陆地生物却几乎毫发无损。

第二次物种大灭绝发生在泥盆纪晚期,其原因也是地球气候变冷和海洋退却。在公元前约3.65亿年的泥盆纪后期,历经两个高峰,中间间隔100万年,发生地球史上第二次物种灭绝事件,海洋生物遭到重创。

 

海底温室气体贮存效应:冰河时期是如何炼成的?

 

海水因为含有平均约3.5%的盐分,所以它的最大密度约出现在摄氏负2度左右,恰好与海水开始结冰的温度很接近。两极临近结冰的海水密度最大,源源不断地沉入两极海底,自转离心力使较重的海水向赤道海底运动,形成全球巨厚的海底冷水层。由于太阳辐射不能进入这个领域,“冷”被安全地封存在海底,冷水领域还不断扩大。赤道海水表层热水在上、冷水在下,垂直方向只有热传导、没有热对流。随着海洋冷水区的不断扩大和赤道海洋表层热水区的不断缩小,赤道和两极的温差也不断加大,形成中、高纬度地区的冰盖和冰川。我们称这个过程为海底藏冷效应。它是海气相互作用的典型范例,大气中的“冷能”由此而进入海洋。冰雪反射太阳辐射,随着冰雪面积的不断扩大,地表接受到的太阳能量越来越少,使大气和海洋越来越冷,冰期有一个长期的“冷积累”过程(见图1)。

海水对温室气体的溶解度伴随温度降低而升高,冷水将大气中的温室气体贮存在海底,压缩成干冰和可燃冰,这不仅导致大气温室气体的较少,而且造成海洋酸化和海洋生物的灭绝,我们称之为海底温室气体贮存效应。

 

 

   太阳辐射变化、核幔角动量交换和气候变化的关系

 

     由于内核相对地壳地幔的差异旋转,太阳辐射达到最大值时使核幔角动量交换达到高峰,部分旋转动能转变为热能积累在核幔边界赤道区(此处核幔速度差最大,积累的热能最多)。超级热幔柱(羽)由核幔边界赤道热区升起,在海底赤道区喷发,加热了底层海水,并引发赤道和两极之间的海洋整体热循环,降低了赤道和两极大气的温差,使两极的海温和气温逐渐上升到冰点以上,消除了海洋藏冷效应的“冷源”,形成全球无冰温暖气候,产生晚白垩纪赤道海洋表层低温之谜(当时温度为摄氏21度,比现代低6.5度)。我们称这个过程为海洋锅炉效应。有证据表明,随着热幔柱喷发强度的减弱,近一亿年间海洋底层水冷却了摄氏15度,大气冷却了10~15度。这是典型的地、海、气相互作用。计算表明,一亿二千万年前形成翁通爪哇海台的海底热幔柱喷发,其释放的热量可使全球海水温度增高33度,喷发过程经历了几百万年时间。有证据表明,在古新世末不到6000年的时间内大洋底层水增温4度以上。海底火山活动引发的深海热对流在全球气候变化中的作用不容忽视(见图1)。

http://guancha.gmw.cn/content/2007-12/25/content_715516_2.htm

http://blog.sciencenet.cn/blog-2277-736985.html

http://blog.sciencenet.cn/blog-2277-521283.html

http://blog.sciencenet.cn/blog-2277-750399.html

海洋冷循环是以冷源为动力的海洋循环,例如海洋藏冷效应;海洋热循环是以热源为动力的海洋循环,例如海洋锅炉效应。

最近研究表明,超级火山爆发点燃化石燃料和可燃冰,增大海洋温度,向大气释放出大陆和海洋的温室气体,构成温室气体最新循环路线图:温暖期温室气体集中在大气,寒冷期温室气体集中在大陆和海洋。这将成为一条定律,循环不止,是冷暖转换的基本因素。

在大气层,太阳能量加热地表,使低空的空气变热膨胀,密度变小而上升到高空,形成以热源为动力的大气环流。但是,太阳能量不能到达深海,只能加热海洋表面,因此不能形成有效的热对流。所以,在海洋中,冷循环就非常重要。两极的海洋是冷循环的出发点。

据网上资料,温盐环流是一个大尺度的海洋环流,由温度及含盐度的差异所致。在北大西洋,环流的表面暖水向北流而深海冷水向南流,造成净热量向北输送。表面海水在位于高纬度的固定下沉区下沉。

表面风对于100 米左右以下深度的海水环流所起的作用微乎其微,而海水温度和盐度的变化则足以使海水密度产生差异。

海水密度的差异使得产生了密度梯度,导致海流的形成。这种方式产生的海流流速非常慢(每年只有若干公里),只有通过特殊的手段才能发现这种海流,也就是通过把不同深度的水团的温度、盐度和氧含量表示在图上,才能发现它的存在。

海洋的温盐环流系统是大洋中最重要的海水运动,一般被形象地称为“大洋输送带”。在这个系统中,北大西洋表面冷而致密的海水下沉到海洋深处,再经过印度洋和太平洋,最终回到大西洋。这整个循环过程要花费数个世纪之久,是调节地球上大陆之间热量的最重要的循环之一。温盐环流在地球上温度和盐度都不同的大洋之间输送着营养物质和热量。



两极海洋冷循环的基本模式

 

NASA所绘制的温盐环流分布图。不同的生态系统,其所受到的环境因子便有所不同,而温盐环流对于海洋生态系而言具有极大的重要性,因为它也主导了盐份的循环。而对气候的重要性同样重要,因为其也伴随气候与能量的调节。

 

3  NASA所绘制的温盐循环图(蓝色表示冷流,红色表示热流)


4  以南极为中心的温盐循环图(蓝色表示冷流,红色表示热流)

 

在南极,冷源在环南极大陆边缘的海洋;在北极,冷源仅有北大西洋的北端。在这里,陆海的分布决定了海洋环流的方式:南极圈内有大片的海洋与赤道海洋相通,可形成高密度冷水的下沉和对流,而北极圈内仅有大西洋北端与赤道海洋相通,北太平洋的白令海峡限制了北太平洋冷源的形成。陆海分布的类型决定了大西洋温盐循环在全球变化中的重要地位。

温室气体在水中的溶解度伴随水温的降低而增大。由于冷水中含有较多的温室气体,所以,伴随冷水在海底的积累,温室气体也被贮存在海底冷水之中。海底冷水温度的降低意味着全球气温变冷。

事实上,大气和海洋的温室气体交换是连续发生的,两极的冷水将温室气体带入海底,赤道处海水上升被加热向大气释放出温室气体,总体处于平衡状态之中。

全球大气表面每年获得5.4×1024J的太阳能量,其中,43%由于反射和散射而折回宇宙空间,14%为大气所吸收,只有43%可以到达地表,每年约为2.3×1024J。全球每年水蒸发所需能量为1.44×1024J,占到达地表太阳能量的63%[1]

地球对太阳光的反射率不是固定不变的,冰川消长、雪线的伸缩、大气透明度的增减、云层厚度的变化,都会影响地球的反光率,其中冰川和积雪的作用最大。在其它因素不变的条件下,微弱因素引发的气候变冷一旦启动,如下步骤将连续反复发生:冷的激发使冰川和积雪面积增加;冰川和积雪面积增加使地球反光率增大;增大的反光率就会导致地球接受太阳能量减少使气温进一步下降;以此形成不断增大的反复循环,可称之为“弱因迭代效应”。微弱因素引发的变暖会起到相反的效果。这是“弱因”打破地球复杂系统平衡的根本原因。

温室气体也具有“弱因迭代效应”:温室气体增加使气候变暖,气候变暖导致海温增加,海温增加将使海洋释放更多温室气体,以此形成反复循环。不过,海洋变暖的速度很缓慢,不如光反射率变化来得迅速。前者适于长周期变化循环,后者适于短周期变化循环。

太阳活动变化也具有“弱因迭代效应”:太阳活动减弱导致全球气温轻微下降,两极变冷导致冷水中溶解更多温室气体,使温室气体进入海底的数量增多;赤道轻微变冷导致上升冷水变热幅度减少,使温室气体进入大气的数量减少,这就打破了原有的进出平衡,导致更多的温室气体滞留在海底,使气温进一步变冷,如此迭代下去,大气中的温室气体越来越少,气温下降也就越来越强烈。

相反,太阳活动增强导致全球气温轻微上升,两极变暖导致冷水中溶解温室气体变少,使温室气体进入海底的数量减少;赤道轻微变暖导致上升冷水变热幅度增大,使温室气体进入大气的数量增大,这就打破了原有的进出平衡,导致更多的温室气体进入大气,使气温进一步变暖,如此迭代下去,大气中的温室气体越来越多,气温上升也就越来越强烈。

配合冰川和积雪面积增加使地球反光率增大的“弱因迭代效应”,太阳活动变化引发全球气候变化的可能性也大大增加(见表1和图1)。

 

海洋锅炉效应造就中生代温暖期

 

已有的研究表明,陆地和海洋含碳量远高于大气,存储在海洋中的碳只要释放2%,就将使大气中的CO2含量增加一倍[3]。白垩纪大气碳含量是目前的8~10[4, 5],末次冰期高峰时大气CO2CH4含量分别比现在减少30~40 %50 %[6]。构造运动释气和海洋增温排气是主要原因[5] 

火山活动是大气温室气体的主要来源。据Gerlach的估算,全球陆相火山以宁静方式放出CO2的速率为每年792 百万吨,而陆相火山喷发出的CO2的速率仅为每年66 百万吨[7]。前者是后者的12倍多。宁静方式火山放气没有明显的火山灰,其增温效果显著。据CoffinEldholm1993)海洋考察结果表明,巨大火成岩省所显示的大陆溢流玄武岩和大洋溢流玄武岩的喷发强度与全球气温和大气CO2高浓度相对应[8]

120 Ma前海底热幔柱喷发形成翁通爪哇海台,其释放的热量为6×1026J,海洋的质量为1.45×1024 g,可使全球海水温度增高33℃,平均每万年海温升高0.1[4]。有证据表明,在古新世末不到6000年的时间内大洋底层水增温4℃以上[9]。海底火山活动引发的海温增高和CO2排放在全球气候变化中的作用不容忽视,这是白垩纪强烈火山活动、大气中高浓度CO2和异常高温一一对应的原因。最近发现在15~20 Ma前南极的夏季温度要比现在高出大约11℃,最高可以达到大约7℃。这一南极地区的绿化过程最高峰大致出现在中新世中期,距今大约16.4~15.7 Ma。中新世中期的温暖环境被认为应当对应于400~600 ppm的大气CO2浓度[1]15~18 Ma前发生的哥伦比亚溢流玄武岩喷发是大气CO2浓度增加的重要原因之一(图8)。

1000 km3熔岩要释放1.6×1013 kgCO23×1012 kg的硫和3×1010 kg的卤素。一个巨大火成岩省的累积过程要发生上千次这样的喷发,它使现代人类造成的污染物产生的影响相形见绌[4]120 Ma前海底热幔柱喷发形成翁通爪哇海台的体积为36×10km315~18 Ma前发生的哥伦比亚溢流玄武岩体积为1.3×106 km3,释放的CO2分别为5.8×1017 kg2.1×1016 kg

现代火山活动有明显致冷的记录。短周期的对应关系是:小冰期对应强火山活动,小气候最适期对应弱火山活动。但是,火山长周期的对应关系却是:火山活动峰值与全球无冰期对应,而谷值与大冰期对应[10]

在过去4.5亿年中地球旋转速率、地磁轴视极移、洋脊的活动、海平面和气候变化有伴随出现的现象。地球旋转加速时期主要对应了正极性时期,而旋转减慢时期主要对应了负极性时期,前者如志留纪至早泥盆纪和中生代,这阶段由于地球旋转速度加快,使地磁极具正极性、洋脊活动增强、全球性海侵和古气候变暖。自晚泥盆纪至二叠纪和新生代,是地球旋转速度减慢时期,表现为负极性为主、洋脊活动减弱、全球性海退、气候剧烈变化和出现大冰期。这些资料表明,在几亿年时间尺度上,各种地质旋回有一定程度的相关性存在,与地球自转速度变化相对应[14]

 

1  地球自转周期与地质旋回

时间   地球自转  全球气候   生物灭绝事件              热幔柱喷发

/Ma                                                    形成物        体积/106km3

480     高峰      温暖期                          北美火山活动高峰

437     低谷  奥陶志留纪大冰期                    北美火山活动低谷

370     高峰  泥盆纪温暖期                        北美火山活动高峰

280     减慢  石炭二叠纪大冰期                    北美火山活动减弱

248     减慢                                             西伯利亚暗色岩

230     低谷   二叠纪大冰期末                     北美火山活动低谷

160     加快   中生代温暖期                       三大洋底重大裂解作用

140     加快   中生代温暖期                       香港超级火山

139     加快   中生代温暖期                       三大洋底重大裂解作用

120~124 高峰      温暖期    不明显 (水下喷发)        翁通爪哇海台    36

                                                    北美火山活动高峰

110~115 加快      温暖期  大规模生物灭绝        凯尔盖朗海台  变小

97      加快   中生代温暖期                       三大洋底重大裂解作用

65~69   高峰      温暖期  恐龙灭绝,所有物种近  德干暗色岩   变小

一半灭绝                          

55~59   高峰      温暖期   许多深海有孔虫类和    北大西洋      变小

                                       陆生哺乳动物灭绝      边缘

25       低谷      低温

15~18   加快      变暖      大规模物种灭绝          哥伦比亚河溢  1.3

                                                                  流玄武岩

10~12   高峰      变暖

0~2     低谷   第四纪大冰期                        北美火山活动低谷

 

表1给出了这种地质旋回与地球自转周期的相关关系,热幔柱强烈喷发导致大量生物灭绝[4]。在15~20 Ma前南极的夏季温度要比现在高出大约11℃,最高可以达到大约7℃。这一南极地区的绿化过程最高峰大致出现在中新世中期,距今大约16.4~15.7 Ma。可以对比的是,在15~25 Ma期间,地球自转处于增速阶段,火山活动强烈。这种对应并不是个例,叶淑华院士指出,在距今0.65-1.4亿年前的白垩纪,地磁场突然倒转,岩浆活动非常剧烈;大气温度比现在高18℃左右;海平面比现在约高150米;地球的自转变快;古生物大量灭绝;大气中CO2的含量十倍于现在;陨石增多[15]。在此期间,地球自转速度处于峰值。与此相反,437 Ma的奥陶-志留纪大冰期、230 Ma石炭-二叠纪大冰期、2 Ma第四纪大冰期以及25 Ma第三纪变冷期都对应地球自转速度低谷和北美火山活动低谷。

海底火山喷发强烈,海洋锅炉效应使海底水温增加,终止海底藏冷效应,海洋增温释放出温室气体,导致全球变暖(见图1)。

 

超级火山点燃化石燃料可燃冰导致生物灭绝

 

发生在大约2.52亿年前的二叠纪-三叠纪生物大灭绝,在短短几万年的时间里,使96%的海洋生物和约70%的陆地生命从地球上永远消失。由于西伯利亚火山岩浆燃烧了大量地下石油和煤炭沉积物,燃烧过程中释放出二氧化碳和甲烷等温室气体,进而导致了大灭绝的发生。澳大利亚山火就是一次未来大灭绝的预演。

与西伯利亚暗色岩类似,德干暗色岩也发生在大陆,因此可以加速化石燃料燃烧和温室气体超级排放,造成恐龙灭绝重大事件。小行星撞击扩大了这一事件。

与以上两者相似,超级海底火山点燃海底石油和可燃冰导致海洋生物灭绝。

温暖期的海洋生物大灭绝,只能用超级海底火山点燃海底石油和可燃冰或天然气,导致海洋生物灭绝来解释,这使气候变暖和生物灭绝同时发生,如第三次至第五次大灭绝。


证据:酸性海洋揭示最酸楚灾难

 

2.5亿年前,地球上的生物经历了一场“酸楚”的苦难。一个由欧洲地质学家组成的科研小组发现了二叠纪和三叠纪之交海水曾出现急剧酸化的最直接证据。科学家预测,在那场灾难中,地球90%的物种灭绝了。

这次海洋酸化灭绝事件影响了所有活的生物,它尤其给海洋生物带来最沉重打击,例如曾到处可见的三叶虫。近日,刊登于《科学》杂志的一项新研究显示,这场海洋酸化在灭绝灾难中起到重要作用。酸化能通过削弱海洋生物产生含钙贝壳的能力杀死它们,而且,它由过多二氧化碳溶解在海洋里所驱动。这场浩劫也为今天敲响警钟:由于化石燃料燃烧释放的二氧化碳增多,海洋酸化速度比2.5亿年前更快,尽管持续时间没有那么长。

“我们目前破坏地球碳循环的速度远快于有史以来的最严重灭绝灾难期,这不是无关紧要的。”美国宾夕法尼亚州立大学地球化学家leekump说,“即便它仅持续几个世纪而非1万年,变化的速度也很重要。”

与小行星触发的灭绝事件不同(6600万年前导致恐龙灭绝),大部分科学家认为二叠纪末期发生的更大灾难是根植于地球的:西伯利亚大规模火山爆发,将数万亿吨碳释放到大气和海洋中。

研究人员之前就曾发现生物能忍受火山爆发带来的多重压力:全球变暖、海洋酸化、海洋中溶解氧下降以及有毒硫磺的增加。但从中挑选出相对重要和相互依赖的影响则十分困难。

现在,科学家有更好的证据显示,海洋酸化沉重打击了生物。这些证据来源于阿拉伯联合酋长国的含碳酸盐的石灰岩。它们形成于2.5亿年前的泛大陆离岸浅水水域,蕴涵了古老特提斯海的地球化学信号。

一般而言,地球化学家习惯使用某种碳同位素的变化作为信号—大气二氧化碳脉冲进入海洋并触发酸化。但在新研究中,科学家分析了特提斯海岩石的硼同位素,这是一种更微弱的信号,但与海洋酸化更直接对应。由于海水中的化学反应导致同位素硼-11和硼-10的比例随ph值而提高,因此该方法实际有效。而沉积在海床上的岩石能反映这些比例的变化。

研究人员发现,同位素信号的下降与ph值下降0.6~0.7单位相一致—这是海水化学的一个明显变化。“这是此次大灭绝事件中海洋酸化的首个实际直接证据。”该研究负责人、新西兰奥塔哥大学地球化学家matthewclarkson说。

碳同位素出现急剧变化5万年后,硼才发生异常。前者一直被认为是海洋酸化和灭绝事件开始的信号。该研究小组表示,碳和硼之间的差距表明,火山爆发导致的碳喷涌造成了两个阶段的灭绝。首先,一个5万年的缓慢碳流进入空气中,然后进入海洋。研究人员假设当时海洋呈弱碱性,从而使得在吸收二氧化碳后,ph值变化很小,对海洋生物的影响也十分微弱。但在第二阶段,即1万年中,二氧化碳急剧增加,压过了海洋反馈机制。

clarkson表示,该版本解释了古生物学家发现的腹足类和双壳类等海洋动物为何在二叠纪灭绝事件后期仍大规模消失。“化石记录也支持了我们在地球化学研究中得出的结论。”他说。美国哈佛大学古生物学家andrewknoll也对此表示同意,他表示,晚期出现的急剧酸化将有助于解释灭绝记录。

二叠纪—三叠纪大灭绝也为今天的地球传达了信息。一方面,那时的海洋酸化速率比现在更慢。该研究预计,在海洋酸化事件中,在1万年间,2.4万吉吨的碳进入大气层,每年的速度为2.4吉吨,其中绝大部分进入海洋。当前,科学家预计,来自各个来源的碳以每年10吉吨的速度进入空气中。

另一方面,即便全部燃烧,今天经济上可行的化石燃料储备包含的约3000吉吨的碳,远不及二叠纪的总和。“我们正以更快的速度向空气中排放碳,但不见得我们能排放同样多的碳。”参与该研究的英国埃塞克特大学地球系统学家timlenton说。但了解二叠纪的情况有多糟糕并没有让lenton感到舒服。“生物非常聪明,能够应对一定数量的酸化。”他说,“但我怀疑存在适应的极限。一些生物可能存在某个临界点。”

该研究合作者、英国爱丁堡大学地球生物学家rachelwood则希望确定海洋酸化不仅仅是一个地区的灾难。下一步,该研究小组将检测位于当今伊朗和阿曼的2.5亿年前形成于特提斯海海床的岩石。“我们需要确立一个全球信号。”她说。

http://roll.sohu.com/20150520/n413380103.shtml

  

结论:改写全球气候历史和生物灭绝历史的重大事件

 

我们在2013年发表的《全球气候变化的成因初探》一文中指出,温室效应不是气候变化的唯一因素,太阳能量在地球内部的积累和释放有不可忽视的多种效应。

在地球史上的五次生物大灭绝的最初表述中,我们看不到太阳能量的影响,这显然忽视了最重要的环节。

《化石能源燃烧加速推动地球生物灭绝》和《火山喷发点燃煤层导致二叠纪生物大灭绝》两小节填补了这一空白,还原了历史的真实过程。太阳能量的长期积累和释放对气候变化和生物大灭绝的贡献终于彰显于大千世界,恢复历史的真实面目。

科学看待全球变暖的时代终于来了!

发生在大约2.52亿年前的二叠纪-三叠纪生物大灭绝,在短短几万年的时间里,使96%的海洋生物和约70%的陆地生命从地球上永远消失。由于西伯利亚火山岩浆燃烧了大量地下石油和煤炭沉积物,燃烧过程中释放出二氧化碳和甲烷等温室气体,进而导致了大灭绝的发生。澳大利亚山火就是一次未来大灭绝的预演。

与西伯利亚暗色岩类似,德干暗色岩也发生在大陆,因此可以加速化石燃料燃烧和温室气体超级排放,造成恐龙灭绝重大事件。小行星撞击扩大了这一事件。

      人类的出现可能改变这一自然规律:化石燃料就是大陆和海洋内的火药桶,超级火山爆发就是导火索,人类开发化石能源,铲除了大陆和海洋内的火药桶,避免了下次超级火山引发的温室气体超级排放,阻止下一次生物大灭绝,变天灾为人类福祉与天人和谐,这应该是天大的好事。

      要温室气体的爆炸式超级排放,还是要温室气体缓慢式人工排放,人类必须做出正确的抉择。

      温室气体减排有利有弊:短期可以维持现状,但不过是扬汤止沸;长期留下后患,造成更严重的生物大灭绝。人类开发化石能源,铲除了大陆和海洋内的火药桶,这才是釜底抽薪。

  海水对温室气体的溶解度伴随温度降低而升高,冷水将大气中的温室气体贮存在海底,压缩成干冰和可燃冰,这不仅导致大气温室气体的较少,而且造成海洋酸化和海洋生物的灭绝,我们称之为海底温室气体贮存效应。

  最近研究表明,超级火山爆发点燃化石燃料和可燃冰,增大海洋温度,向大气释放出大陆和海洋的温室气体,构成温室气体最新循环路线图:温暖期温室气体集中在大气,寒冷期温室气体集中在大陆和海洋。这将成为一条定律,循环不止,是冷暖转换的基本因素。

 

参考文献 

1. 杨冬红,杨学祥,刘财。20041226日印尼地震海啸与全球低温[J]。地球物理学进展。2006213):10231027

Yang Donghong,Yang Xxuexiang, Liu Cai. Global low temperature, earthquake and tsunami (Dec. 26, 2004) inIndonesia[J].Progress in Geophysics, 2006, 213: 10231027.

2. 杨冬红,杨德彬,杨学祥. 2011. 地震和潮汐对气候波动变化的影响[J]. 地球物理学报, 544):926-934

Yang D H,Yang D B, Yang X X, The influence oftidesandearthquakes in globalclimatechanges. Chinese Journal of geophysics (in Chinese),2011, 54(4): 926-934

3. 杨冬红,杨学祥。全球变暖减速与郭增建的“海震调温假说”。地球物理学进展。200823 (6): 18131818YANG Dong-hong, YANGXue-xiang. The hypothesis of the ocesnic earthquakes adjusting climate slowdownof global warming. Progress in Geophysics. 2008, 23 (6): 18131818.

4. 杨冬红杨学祥北半球冰盖融化与北半球低温暴雪的相关性[J]. 地球物理学进展, 2014, 29(2):610-615. YANG Dong-hong, YANG Xue-xiang. Studyon the relation between ice sheets melting and low temperature in NorthernHemisphere. Progress in Geophysics. 2014, 29 (1): 610615.

5. 杨冬红,杨德彬,杨学祥。地震和潮汐对气候波动变化的影响。地球物理学报。2011544):926-934. Yang D H,Yang D B, Yang X X, The influence of tides and earthquakes in global climatechanges. Chinese Journal of geophysics(in Chinese), 2011, 54(4): 926-934

6.  杨冬红,杨学祥全球气候变化的成因初探地球物理学进展. 2013, 28(4): 1666-1677. Yang X X, Chen D Y. Study oncause of formation in Earths climatic changes. Progress in Geophysics (inChinese), 2013, 28(4): 1666-1677.

7. 杨冬红. 2009. 潮汐周期性及其在灾害预测中应用[D][博士论文].长春:吉林大学地球探测科学与技术学院.

Yang Dong-hong. 2009.Tidal Periodicity and its Application in Disasters Prediction[D]. [Ph. D.thesis]. ChangchunCollege of Geo-exploration Science and Technology, Jilin   University.

8. 杨冬红杨学祥.2013.a 地球自转速度变化规律的研究和计算模型地球物理学进展, 281):58-70

Yang D H, Yang XX. 2013a. Study and model on variation ofEarths Rotation speed. Progress inGeophysics (in Chinese), 281):58-70.

9.   杨学祥陈殿友火山活动与天文周期地质论评, 1999, 45(增刊): 33-42. Yang X X, Chen D Y. The Volcanoes and the Astronomical Cycles. Geological Review (in Chinese), 1999, 45(supper): 33-42.


http://blog.sciencenet.cn/blog-2277-1146071.html




https://blog.sciencenet.cn/blog-2277-1302957.html

上一篇:[转载]灾害链规律不容忽视
下一篇:厄尔尼诺指数进入上升区间:2021年9月5日晚报
收藏 IP: 103.57.12.*| 热度|

2 杨正瓴 周少祥

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-8-21 12:20

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部