时空可变系多线矢世界分享 http://blog.sciencenet.cn/u/可变系时空多线矢主人 演绎矢算研究高速运动且有相互作用的问题所不可缺少!

博文

4维时空,自旋力、 [1线矢]、[3线矢]=[1*线矢]

已有 1221 次阅读 2020-3-19 13:34 |个人分类:物理|系统分类:论文交流

4时空,自旋力、 [1线矢][3线矢]=[1*线矢]

 

    A(4)[1线矢]叉乘B(4)[1线矢]=C(6)[2线矢]

={iA0[0]+Aj[j],j=13求和}

   叉乘{iB0[0]+Bj[j],j=13求和}

={i(A0Bj-AjB0)[0j]+(AkBl-AlBk)[kl]

,jkl=123循环求和}

A(4)[标量]4维时空偏分[1线]=(4)A(4)[1线矢]

={(-i(4)A(4)/r(4)0)[0]

+((4)A(4)j/r(4)j)[j] ,j=13求和}

={-i((4)A(4)/r0)[0]+((3)A(3)/r(3))[(3)]}

(4)[1线矢]

={(-i(4)/r(4)0)[0]+((4)/r(4)j)[j] ,j=13求和}

={-i((4)/r0)[0]+((3)/r(3))[(3)]}

r0=c ta*t 量纲:[L]^(-1)

 

对于电中性粒子,

p(4)[]=m0(ca*){i(ca*)[0]+v(3)[(3)]}

/[(ca*)^2-v(3)^2]^(1/2)

6时空自旋[2线矢]=s(6)[ 2线矢]

=(4)[ 1线矢]叉乘p(4)[ 1线矢]

={(dp4,j/dr4,0-dp4,0/dr4,j)[0j]

+(dp4,l/dr4,k-dp4,k/dr4,l)[kl] ,jkl=123循环求和}

=m0(ca*)

{[i(dv4,j/d(a*t声或c t)-d(a*c)/dr4,j)[0j]

+(dv4,l/dr4,k-dv4,k/dr4,l)[kl] ,jkl=123循环求和]

[(ca*)^2-v(3)^2]

+[i(v4,jdv4,j/d(a*t声或c t)-(a*c)d/dr4,j)[0j]

+(v4,ldv4,l/dr4,k-v4,kdv4,k/dr4,l)[kl]

,jkl=123循环求和]}/[(ca*)^2-v(3)^2]^(3/2)

量纲:[M][T]^(-1)

4时空自旋力[1线矢]

 f(4)自旋力[1线矢]=v(4)[1线矢]点乘 6时空自旋[2线矢]

={v4,j(dp4,j/dr4,0-dp4,j/dr4,0)[0]

-v4,0(dp4,j/dr4,0-dp4,j/dr4,0)[j]

+v4,l(dp4,l/dr4,k-dp4,k/dr4,l)[k]

-v4,k(dp4,l/dr4,k-dp4,k/dr4,l)[l]

,jkl=123循环求和}

=3维空间的,f(3)运动[1线矢]+f(3)离心[1线矢]

=m0(ca*)

{[-i(a*c)(dv4,j/((a*c)dt) -d(a*c)/dr4,j)[j]

  +iv4,j(dv4,j/((a*c)dt)-d(a*c)/dr4,j)[0]

  -v4,k(dv4,l/dr4,k-dv4,k/dr4,l)[l]

+v4,l(dv4,l/dr4,k-dv4,k/dr4,l)[k] ,jkl=123循环求和]

[(ca*)^2-v(3)^2]

+[-i(a*c)(v4,jdv4,j/((a*c)dt)

-(a*c)d(a*c)/dr4,j)[j]

    +iv4,j(v4,jdv4,j/((a*c)dt)

-(a*c)d(a*c)/dr4,j)[0]

   -v4,k(v4,ldv4,l/dr4,k-v4,kdv4,k/dr4,l)[l]

+v4,l(v4,ldv4,l/dr4,k-v4,kdv4,k/dr4,l)[k]

,jkl=123循环求和]}/[(ca*)^2-v(3)^2]^(3/2)

   4时空自旋力[3线矢]

 f(4)自旋[3线矢]=v(4)[1线矢]叉乘 6时空自旋[2线矢]

 =v(4)[1线矢]叉乘 s(6)[ 2线矢]

={v4,j(dp4,l/dr4,k-dp4,k/dr4,l)[0*]

+v4,0(dp4,l/dr4,k-dp4,k/dr4,l)[j*]

-v4,l(dp4,j/dr4,0-dp4,0/dr4,j)[k*]

+v4,k(dp4,j/dr4,0-dp4,0/dr4,j)[l*]

,jkl=123循环求和}

=3维空间的,f(3)运动[1*线矢]+f(3)离心[1*线矢]

=m0(ca*)

{[iv4,k(dv4,l/((a*c)dt)-d(a*c)/dr4,l)[0kl]]

+v4,j(dv4,l/dr4,k-dv4,k/dr4,l)[kl] ,jkl=123循环求和]

[(ca*)^2-v(3)^2]

+[iv4,k(v4,ldv4,l/((a*c)dt)-(a*c)d/dr4,l)[0kl]

+v4,j(v4,ldv4,l/dr4,k-v4,kdv4,k/dr4,l)[jkl]

,jkl=123循环求和]}/[(ca*)^2-v(3)^2]^(3/2)

 ((声传)m0=0v4,0=a*r4,0=a*t声,

(光传)m0=0v4,0=cr4,0=c t光,)

量纲:[M][L][T]^(-2)C(4)[1线矢]=A(4)[1线矢]点乘B(6)[2线矢]

C(4)[3线矢]=C(4)[1*线矢]=A(4)[1线矢]叉乘B(6)[2线矢]

C(4)[1*线矢]A(4)[1线矢]B(6)[2线矢],都正交,

C(4)[1线矢]C(4)[1*线矢],彼此正交。

对于声子或光子, f(4)自旋力[1线矢]=0/0,也只能分别表达为:d(m0a*)/dt d(m0c)/dt

d(h声频率)/dr(4)=hzd(h光频率)/dr(4)=hz

z声、z光,分别是,声、光,沿时轴或空间轴的红移量,






https://blog.sciencenet.cn/blog-226-1224268.html

上一篇:钟南山:不能靠集体免疫,疫苗是解决新冠肺炎的根本
下一篇:【新华网连线武汉】神经内科专家张熙回应新冠病毒攻击中枢神经系统
收藏 IP: 123.114.54.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (1 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-30 14:26

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部