||
时间:公元1887年。
迈克尔逊-莫雷实验(Michelson-Morley Experiment),是1887年迈克尔逊和莫雷在美国克利夫兰做的用迈克尔逊干涉仪测量两垂直光的光速差值的一项著名的物理实验。但结果证明光速在不同惯性系和不同方向上都是相同的,由此否认了以太(绝对静止参考系)的存在,从而动摇了经典物理学基础,成为近代物理学的一个开端,在物理学发展史上占有十分重要的地位。
19 世纪流行着一种“以太”学说,它是随着光的波动理论发展起来的。那时,由于对光的本性知之甚少,人们套用机械波的概念,想像必然有一种能够传播光波的弹性物质,它的名字叫“以太”。许多物理学家们相信“以太”的存在,把这种无处不在的“以太”看作绝对惯性系,用实验去验证“以太”的存在就成为许多科学家追求的目标。
当时认为光的传播介质是“以太”。由此产生了一个新的问题:地球以每秒30公里的速度绕太阳运动,就必须会遇到每秒30公里的“以太风”迎面吹来,同时,它也必须对光的传播产生影响。这个问题的产生,引起人们去探讨“以太风”存在与否。如果存在以太,则当地球穿过以太绕太阳公转时,在地球通过以太运动的方向测量的光速应该大于在与运动垂直方向测量的光速。
1887年,阿尔贝特·迈克尔逊和爱德华·莫雷在克里夫兰的卡思应用科学学校进行了测量地球在以太中的速度。利用地球的运动和光速在方向上的不同,从而求得地球相对于以太的绝对速度。实验结果表明,光速在各个方向上没有差异。
莫雷不确信他自己的结论,继续与达通·米勒做更多的实验。米勒制作了更大的实验设备,最大的安装于威尔逊山天文台的臂长32米(有效长度)的仪器。为了避免实体墙可能造成的对以太风的阻挡,他使用了帆布为主体的流动墙。他每次旋转设备都会观测到不同的小偏移,不论是恒星日还是年。他的测量值仅达到大约10 km/s,而不是从地球轨道运动所期待的30 km/s。他仍然不确信这是由于局部拖拽造成的,他没有尝试进行详细的解释。
肯尼迪后来在威尔逊山上作了实验,米勒发现1/10的漂移,并且不受季节影响。米勒的发现当时认为非常重要,并于1928年在一份会议报告上与迈克耳孙、洛伦兹等人讨论。普遍认为需要更多的实验来检验米勒的结果。洛伦兹认可这个结论,造成漂移的原因不符合他的以太说或者爱因斯坦的狭义相对论。爱因斯坦没有出席会议,但是感觉这个实验结果恐怕是实验误差。后来的实验没能重新获得米勒的结果,现代实验的精度推翻了此实验结论。
当时由于迈克尔逊-莫雷实验测定光速在各个方向上没有差异的结果与光行差的结果矛盾,最后以太被否定存在。
然而,最新研究结果表明,暗物质正反粒子偶极子的规律极化、定向偏转、震荡感应和密度梯度变化分别形成电场、磁场、电磁波和引力场。
星系和星体可局部牵引暗物质正反粒子偶极子,超过这局部一定范围内梯度牵引,而超过梯度牵引范围为0牵引。小型物体在外部无法有效牵引,物体内部部分牵引。
预测与验证:
①在地球表面,暗物质正反粒子偶极子处于地球的完全牵引状态,与地球无相对运动,因此采用迈克尔逊-莫雷实验观测为光速在各个方向上无差异。
②空间站高度为梯度牵引范围,相对暗物质正反粒子偶极子运动,因此采用迈克尔逊-莫雷实验能观测到空间站与暗物质正反粒子偶极子的相对运动。
③飞机无法牵引暗物质正反粒子偶极子,飞机相对正反粒子偶极子运动,因此采用迈克尔逊-莫雷实验能观测到飞机与正反粒子偶极子的相对运动。
④小型物质内部部分牵引暗物质正反粒子偶极子,因此采用迈克尔逊-莫雷实验能观测到运动物质与正反粒子偶极子的相对运动。
⑤地球、太阳、银河系均在各自范围内完全牵引暗物质正反粒子偶极子,可以观测到在各自完全牵引范围以外的光线的光行差。
《暗物质与宇宙模型》全书下载
链接:https://pan.baidu.com/s/1saeswH_469N-qGaGH0CaVg?pwd=3qr0
提取码:3qr0
《和平与发展》全书下载
链接:https://pan.baidu.com/s/1cgCYm0EEaYOzNzylsrAtuA?pwd=cxkq
提取码:cxkq
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-2 15:35
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社