惟心书院分享 http://blog.sciencenet.cn/u/lev 宇宙内事即己分内事,己分内事即宇宙内事。——(南宋)陆九渊

博文

物理学笔记一则(1):“万能方程”

已有 6565 次阅读 2014-9-9 15:54 |个人分类:格物笔记|系统分类:科研笔记| 偏微分方程, 数学物理方程

 

物理学笔记一则(1):“万能方程”

 

      昨天点开科学网首页:“李轻舟:悲剧”赫然入目,着实吓了我一跳——俺咋就悲剧了呢?

  开个玩笑,咱们书归正传......

 

  话说当年有门课叫《数学物理方法》,主要包括复变函数和数学物理方程(“偏微分方程”与“特殊函数在物理学中的应用”),主讲人Z教授是位讲课慢条斯理的老头儿,我们都挺喜欢他,却免不了私下攒了一个稍显“恶毒”的段子:Z老师的课,你大可打个盹儿,因为你醒了会发现他老人家还在讲你去见周公之前的部分......

   Z老师讲课极其仔细,生怕我们漏掉一个细节。期末时,他老人家还把用了几十年的手写讲义(稿签纸都发黄发脆了......)贡献出来,复印成册供我们作复习资料——这份讲义资料连同当年的各种笔记,我一直保存着,有时想起一些问题,还会拿出来翻翻。

   在讲义中,Z教授的有些表述属于“老派的风格”,与现行的数学表述(专业数学文献里表述)略有不同。最令我印象深刻的是一个他老人家“总结”的“万能方程”——“万能”这个名字是我取的,当然是定域的“万能”(我不相信有非定域的“万能”),三角函数里不是也有个一组“万能公式”么?我不确定这个“方程”是否Z教授原创,他老人家没说,我们也没问

     

       考虑如下类型的偏微分方程:

      $\left ( \bigtriangledown ^{2}+A\frac{\partial }{\partial t}+B\frac{\partial^2 }{\partial t^2}+C\cdot V \right )\cdot \Psi =0$

式中,A、B、C是三个常数;V=V(x,y,z)是某个实函数; $\Psi =\Psi \left ( x,y,z;t \right )$ 是偏微分方程“待求”的“函数解”——即“状态函数”; $\left ( x,y,z \right )\in \Omega$ , $\Omega$ 是三维空间中的某个区域;t为任意时刻。

     这个“万能方程”在“形式上”涵盖了“理物”基础中重要的基本偏微分方程——不信?请看(讲义内容+我的笔记与补充):    

   (1)不妨设

$A=0,B=-\frac{1}{a^{2}},C=0$

若 $a=\sqrt{\frac{Y}{\rho }}$ ,表示机械波在均匀弹性介质中的传播速率,Y为杨氏模量, $\rho$ 为介质密度,这个方程即为均匀弹性介质中的机械波波动方程,态函数物理意义为空间位移或角位移;若a=c,即真空中的光速,这个方程可以表示真空中平面电磁波的波动方程,态函数物理意义为电场强度或磁场强度

    (2)不妨设

$A=-\frac{1}{\kappa },B=0,C=0$

$\kappa$ 为扩散率或温度传导率,这个方程可以表示基于傅里叶定律的扩散或传导方程,态函数的物理意义为温度

     (3)不妨设

$A=0,B=0,C=0$

这便是刻画稳定场的拉普拉斯方程,态函数的物理意义可以是温度(温度场)也可以是电势(静电场)。

      (4)不妨设

$A=\frac{2im}{h},B=0,C=-\frac{2m}{h^{2}}$

此处h表示约化普朗克常量ћ,这便是非相对论性薛定谔方程,态函数的物理意义即波函数

 

    上述方程主要刻画各项均匀同性与“无源无汇”的情况(态函数在空间的分布与时间上的演化)。若是“有源”或“有汇”的情况,可以“实事求是”地“改造”方程(等号右边的“0”),比如连续性方程、泊松方程等

        我一度把这个“万能方程”视为跨物理学各具体领域的一个“形式公理”,现在我更倾向于把它理解为一个“形式意义”上的“基本模型”(“原模型”)——从一个基本“形式”出发,根据具体情况的需要,衍生出各种各样的“具体模型”......

        It's amazing!

     



https://blog.sciencenet.cn/blog-217073-826220.html

上一篇:悲剧——庞加莱、希尔伯特、哥德尔与普朗克
下一篇:跟风上七绝,终是不免俗
收藏 IP: 14.29.127.*| 热度|

14 吴飞鹏 赵国求 王荣林 陈楷翰 康建 钟炳 王春艳 杨正瓴 文克玲 徐晓 王鹏 Veteran11 kongzhongqiao yzqts

该博文允许注册用户评论 请点击登录 评论 (31 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-27 09:01

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部