||
科学家们发现了超越欧姆定律的道路
诸平
据日本东北大学(Tohoku University, Sendai, Japan)2024年5月3日提供的消息,科学家们发现了超越欧姆定律的道路(Unlocking the Secrets of the Electron Universe: Scientists Discover Path Beyond Ohm’s Law).
日本东北大学和日本原子能机构(Japan Atomic Energy Agency, Tokai, Japan)的研究人员开发了基本的实验和理论,以操纵电子宇宙(‘electron universe’)的几何形状。电子宇宙以一种数学上类似于实际宇宙的方式,在环境条件下的磁性材料中描述电子量子态的结构。
所研究的几何性质,即量子度量(quantum metric)被检测为不同于普通导电的电信号。这一突破揭示了电子的基本量子科学,并为利用量子度量中出现的非常规传导设计创新的自旋电子器件(spintronic devices)铺平了道路。相关研究结果于2024年4月22日已经在《自然·物理学》(Nature Physics)杂志网站发表——Jiahao Han, Tomohiro Uchimura, Yasufumi Araki, Ju-Young Yoon, Yutaro Takeuchi, Yuta Yamane, Shun Kanai, Jun’ichi Ieda, Hideo Ohno, Shunsuke Fukami. Room-temperature flexible manipulation of the quantum-metric structure in a topological chiral antiferromagnet. Nature Physics, 2024. DOI: 10.1038/s41567-024-02476-2. Published: 22 April 2024. https://www.nature.com/articles/s41567-024-02476-2
参与此项研究的除了来自日本东北大学和日本原子能机构的研究人员之外,还有来自日本科学技术振兴机构(Japan Science and Technology Agency, Kawaguchi, Japan)、日本国家量子科学与技术研究所(National Institutes for Quantum Science and Technology, Takasaki, Japan)以及日本稻盛科学研究所(Inamori Research Institute for Science, Kyoto, Japan)的研究人员。
导电性对许多设备来说都是至关重要的,它遵循欧姆定律:电流与施加的电压成正比。但为了实现新设备,科学家们必须找到一种超越这一定律的方法。这就是量子力学的用武之地。一种被称为量子度量的独特量子几何(unique quantum geometry)可以产生非欧姆传导(non-Ohmic conduction)。这种量子度量是材料本身固有的属性,表明它是材料量子结构的基本特征。
量子度量和电子宇宙(Quantum Metric and Electron Universe)
量子度量(‘quantum metric’)一词的灵感来自广义相对论中的度量概念,它解释了宇宙的几何形状是如何在强烈引力的影响下扭曲的,比如黑洞周围的引力。同样,在追求设计材料内部的非欧姆传导时,理解和利用量子度量变得势在必行。这个度量描述了电子宇宙的几何形状,类似于物理宇宙(physical universe)。具体来说,挑战在于操纵单个器件内的量子度量结构(quantum-metric structure),并识别其对室温下导电的影响。
研究小组报告了在室温下成功地操纵了由外来磁铁Mn3Sn和重金属Pt组成的薄膜异质结构中的量子结构。Mn3Sn在与Pt相邻时表现出必要的磁性织构,Pt被外加磁场剧烈调制。他们检测和磁控制非欧姆传导称为二阶霍尔效应(second-order Hall effect),其中电压对施加的电流作正交和二次响应。通过理论建模,他们证实了这些观测结果可以完全由量子度量来描述。
“我们的二阶霍尔效应是由量子结构与Mn3Sn/Pt界面上的特定磁性织构耦合产生的。因此,我们可以通过自旋电子方法修改材料的磁性结构来灵活地操纵量子度量,并验证在二阶霍尔效应的磁性控制中这种操纵,”该研究的第一作者韩家豪(Jiahao Han音译)解释说。
理论分析的主要贡献者荒木康史(Yasufumi Araki)补充说:“理论预测将量子度量作为一个基本概念,将实验中测量的材料特性与数学物理中研究的几何结构联系起来。然而,在实验中证实其证据仍然具有挑战性。我希望我们获得量子度量的实验方法将推动这样的理论研究。”
首席研究员深見俊輔(Shunsuke Fukami)补充说:“到目前为止,量子度量一直被认为是固有的、不可控的,就像宇宙一样,但现在我们需要改变这种看法。我们的发现,特别是在室温下的灵活控制,可能为未来开发整流器(rectifiers)和探测器(detectors)等功能设备提供新的机会。”
这项工作的一部分得到了日本科学促进会{Japan Society for the Promotion of Science (JSPS; KAKENHI Grant Nos. 19H05622, 22K03538 and 22KF0035)}、日本教育、文化、体育、科技术省{ Initiative to Establish Next-Generation Novel Integrated Circuits Centers (X-NICS) funded by the Ministry of Education, Culture, Sports, Science and Technology (Grant No. JPJ011438)}、卡西欧科技基金会(Casio Science and Technology Foundation Grant No. 40-4)、日本学术振兴会(JSPS)日本博士后研究奖学金(JSPS Postdoctoral Fellowship for Research in Japan)的支持或资助。
上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。
The quantum metric and Berry curvature are two fundamental and distinct factors that describe the geometry of quantum eigenstates. Although the role of the Berry curvature in governing various condensed-matter states has been investigated extensively, the quantum metric, which has also been predicted to induce topological phenomena, has rarely been studied, particularly at ambient conditions. Here we demonstrate the room-temperature manipulation of the quantum-metric structure of electronic states through its interplay with the interfacial spin texture in a topological chiral antiferromagnet/heavy metal Mn3Sn/Pt heterostructure, which is manifested in a time-reversal-odd second-order Hall effect. We also show the flexibility in controlling the quantum-metric structure with moderate magnetic fields. Our results open the possibility of building applicable nonlinear devices by harnessing the quantum-metric structure.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2025-1-10 12:19
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社