||
一种实现光子间有效相互作用的新方法
诸平
据物理学家组织网(Phys.org)2022年10月6日报道,一种实现光子间有效相互作用的新方法(A new method to enable efficient interactions between photons)。
光子(Photons)是代表光量子的粒子,在开发新的量子技术方面显示出巨大的潜力。更具体地说,物理学家一直在探索创造光子量子比特(photonic qubits,信息的量子单位)的可能性,这种量子比特可以使用光子进行远距离传输。
尽管取得了一些有希望的结果,但在光子量子比特能够大规模成功实现之前,仍需要克服一些障碍。例如,已知光子易受传播损失(即,从一点传播到另一点时能量、辐射或信号的损失)的影响,并且彼此不相互作用。
丹麦哥本哈根大学(University of Copenhagen)、西班牙费西卡基础IFF-CSIC研究所(Instituto de Física Basic IFF-CSIC)和德国波鸿鲁尔大学(Ruhr Universität Bochum)的研究人员最近设计了一种策略,可以帮助克服其中一个挑战,即缺乏光子-光子相互作用。他们的方法于2022年9月1日已经在《自然物理学》(Nature Physics)杂志网站发表——Hanna Le Jeannic, Alexey Tiranov, Jacques Carolan, Tomás Ramos, Ying Wang, Martin Hayhurst Appel, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Nir Rotenberg, Leonardo Midolo, Juan José García-Ripoll, Anders S. Sørensen, Peter Lodahl. Dynamical photon–photon interaction mediated by a quantum emitter. Nature Physics, volume 18, pages 1191–1195 (2022). DOI: 10.1038/s41567-022-01720-x. Published: 01 September 2022. https://doi.org/10.1038/s41567-022-01720-x. 此方法最终可能有助于开发更复杂的量子器件。
开展这项研究的研究人员之一彼得·洛达尔(Peter Lodahl)告诉物理学家组织网记者:“15年来,我们一直在研究单量子发射器(single quantum emitters)——量子点(quantum dots)与单光子(single photons)的确定性接口,并开发了一种基于纳米光子波导的非常强大的方法(a very powerful method based on nanophotonic waveguides)。我们通常将这些设备应用于确定性单光子源(single-photon sources)和多光子纠缠源(multi-photon entanglement sources),但另一种可能的应用是对光子进行非线性操作。”
早在2015年,彼得·洛达尔和他的同事就利用单个光子实现了第一次非线性操作的概念验证演示(the first proof-of-concept demonstration)。然而,当他们进一步研究这种效应时,他们在彻底理解这种复杂、单光子和非线性相互作用的基本物理基础上遇到了困难。
彼得·洛达尔说:“在我们之前的工作中,我们发现控制光脉冲非线性相互作用的物理非常丰富,并为构建光子量子门(photonic quantum gates)和光子分类器(photon sorters)提供了一些新的机会。我们对非线性量子脉冲进行了首次实验研究,该脉冲由于与确定性耦合的量子发射器耦合而发生非线性相互作用。”
在他们的新实验中,研究人员利用单个量子发射器与纳米光子波导的高效相干耦合来实现单光子波包之间的非线性量子相互作用。为了做到这一点,他们使用了一个量子点,一个纳米大小的粒子,其行为类似于一个二能级原子(two-level atom),它嵌入在光子晶体波导中。
彼得·洛达尔解释说:“在这种系统中,耦合是确定的,因此即使发射到波导中的一个光子也会与量子点相互作用。发送包含两个或多个光子的脉冲会产生量子关联,因为一次只有一个光子可以与量子点相互作用。通过控制量子脉冲的持续时间,我们可以调整这些关联以及光子之间的相互作用。”
彼得·洛达尔和他的同事使用他们的实验方法,基本上能够使用第二个光子控制光子,这是由他们的量子发射器介导的。换句话说,他们成功地实现了非线性光子-光子相互作用。
彼得·洛达尔说:“我们开发了一种方法,通过与量子点的耦合,使光子能够有效地相互作用。我们认为,这可能为制造光子-光子量子门(光子量子计算中的难点)或决定性光子分类器设备开辟新的方向,例如量子中继器(quantum repeaters)。”
这组研究人员引入的新策略可能对量子物理研究和量子技术的发展都有重要影响。例如,他们的方法可以为量子光学器件的发展开辟新的可能性,同时也允许物理学家实验定制的复杂光子量子态。
参与该研究的另一位研究人员汉娜·勒吉尼(Hanna Le Jeannic)告诉物理学家组织网记者:“我们有一系列的活动来扩展目前的工作。在基本层面上,我们正在更深入地了解光的量子态是如何通过单个量子点传播而受到影响的。但我们也已经预见到这种量子相互作用的应用。”
目前,彼得·洛达尔、汉娜·勒吉尼及其同事正试图利用他们最近研究中实现的非线性光子-光子相互作用来模拟分子的振动动力学。这可以通过将复杂分子的振动动力学映射到先进光子电路中光子的传播上来实现。
上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。
定制的单光子:光子的光学控制是新技术的关键(Tailored single photons: Optical control of photons as the key to new technologies)
Abstract (DOI: 10.1038/s41567-022-01720-x)
Single photons role in the development of quantum science and technology. They can carry quantum information over extended distances to act as the backbone of a future quantum internet1 and can be manipulated in advanced photonic circuits, enabling scalable photonic quantum computing2,3. However, more sophisticated devices and protocols need access to multi-photon states with particular forms of entanglement. Efficient light–matter interfaces offer a route to reliably generating these entangled resource states4,5. Here we utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide to realize a quantum nonlinear interaction between single-photon wavepackets. We demonstrate the control of a photon using a second photon mediated by the quantum emitter. The dynamical response of the two-photon interaction is experimentally unravelled and reveals quantum correlations controlled by the pulse duration. Further development of this platform work, which constitutes a new research frontier in quantum optics6, will enable the tailoring of complex photonic quantum resource states.
Ravitej Uppu, Leonardo Midolo, Xiaoyan Zhou, Jacques Carolan, Peter Lodahl. Quantum-dot-based deterministic photon–emitter interfaces for scalable photonic quantum technology. Nature Nanotechnology, volume 16, pages 1308–1317 (2021) . DOI: 10.1038/s41565-021-00965-6. Published: 18 October 2021. https://doi.org/10.1038/s41565-021-00965-6
Abstract (DOI: 10.1038/s41565-021-00965-6)
The scale-up of quantum hardware is fundamental to realize the full potential of quantum technology. Among a plethora of hardware platforms, photonics stands out: it provides a modular approach where the main challenges lie in the construction of high-quality building blocks and in the development of methods to interface the modules. The subsequent scale-up could exploit mature integrated photonics foundry technology to produce small-footprint quantum processors of immense complexity. Solid-state quantum emitters can realize a deterministic photon–emitter interface and enable key quantum photonic resources and functionalities, including on-demand single- and multi-photon-entanglement sources, as well as photon–photon nonlinear quantum gates. In this Review, we use the example of quantum dot devices to present the physics of deterministic photon–emitter interfaces, including the main photonic building blocks required to scale up, and discuss quantitative performance benchmarks. While our focus is on quantum dot devices, the presented methods also apply to other quantum-emitter platforms such as atoms, vacancy centres, molecules and superconducting qubits. We also identify applications within quantum communication and computing, presenting a route towards photonics with a genuine quantum advantage.
A. Javadi, I. Söllner, M. Arcari, S. Lindskov Hansen, L. Midolo, S. Mahmoodian, G Kiršanskė, T. Pregnolato, E. H. Lee, J. D. Song, S. Stobbe, P. Lodahl. Single-photon non-linear optics with a quantum dot in a waveguide. Nature Communications, volume 6, Article number: 8655 (2015). DOI: 10.1038/ncomms9655. Published: 23 October 2015. https://doi.org/10.1038/ncomms9655
Abstract (DOI: 10.1038/ncomms9655)
Strong non-linear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, non-linear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quantum emitter deterministically coupled to a propagating mode fundamentally changes the situation, since each photon inevitably interacts with the emitter, and highly correlated many-photon states may be created. Here we show that a single quantum dot in a photonic-crystal waveguide can be used as a giant non-linearity sensitive at the single-photon level. The non-linear response is revealed from the intensity and quantum statistics of the scattered photons, and contains contributions from an entangled photon–photon bound state. The quantum non-linearity will find immediate applications for deterministic Bell-state measurements and single-photon transistors and paves the way to scalable waveguide-based photonic quantum-computing architectures.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-22 18:36
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社