||
新技术使物理学家能够研究原子内部中子的相互作用
诸平
Evolution of nuclear electromagnetic properties for the 9/2+ ground states of 105–131In isotopes. a, b, The electric quadrupole moments (a) and magnetic dipole moments (b). The horizontal dotted line indicates the single-particle value (Schmidt limit). Experimental results are compared with theoretical calculations from ab initio VS-IMSRG and DFT. Literature experimental values for 105–127In were taken from ref. 7. The evolution of collective properties of these isotopes is illustrated at the bottom of the figure: left, quadrupole polarization gradually reduces to a single-proton-hole value at N=82; right, the magnetic dipole moments abruptly approach the value for a single proton hole in a 132Sn core at N=82, as the dominant effect changes from charge to spin distribution. Credit: Nature (2022). DOI: 10.1038/s41586-022-04818-7
据物理学家组织网(Phys.org)2022年7月14日报道,一个由多国物理学家组成的研究团队开发了一种新技术,可以让研究人员研究原子内部中子之间的相互作用(New technique allows physicists to study interactions of neutrons inside of an atom)。相关研究结果于2022年7月13日已经在《自然》(Nature)杂志网站发表——A. R. Vernon, R. F. Garcia Ruiz, T. Miyagi, C. L. Binnersley, J. Billowes, M. L. Bissell, J. Bonnard, T. E. Cocolios, J. Dobaczewski, G. J. Farooq-Smith, K. T. Flanagan, G. Georgiev, W. Gins, R. P. de Groote, R. Heinke, J. D. Holt, J. Hustings, á. Koszorús, D. Leimbach, K. M. Lynch, G. Neyens, S. R. Stroberg, S. G. Wilkins, X. F. Yang, D. T. Yordanov. Nuclear moments of indium isotopes reveal abrupt change at magic number 82. Nature, 2022, 607: 260–265. Published: 13 July 2022. DOI: 10.1038/s41586-022-04818-7
参与此项研究的有来自英国曼彻斯特大学(The University of Manchester, UK)、英国约克大学(University of York, Heslington, UK);美国麻省理工学院(Massachusetts Institute of Technology, Cambridge, MA, USA)、美国华盛顿大学(University of Washington, Seattle, USA);中国北京大学(Peking University, Beijing, China)、比利时鲁汶大学(KU Leuven, Belgium)、瑞士日内瓦的欧洲核子研究中心(CERN, Geneva, Switzerland)、加拿大国家研究院(TRIUMF, Vancouver, British Columbia, Canada)、波兰华沙大学(University of Warsaw, Poland)、法国巴黎-萨克莱大学(Université Paris-Saclay, Orsay, France)、芬兰于韦斯屈莱大学(University of Jyväskylä, Finland)、德国美因茨约翰内斯•古登堡大学(Johannes Gutenberg-Universität Mainz, Germany)、加拿大麦吉尔大学(McGill University, Montréal, Québec, Canada)以及瑞典哥德堡大学(University of Gothenburg, Sweden)的研究人员。在此论文中,该国际研究小组描述了他们的激光光谱测量技术以及如何使用它。
自从科学家发现每个原子内部都有质子(protons),这些质子和中子(neutrons)一样给出原子的原子序数(atomic number)以来,已经有近100年的历史了。尽管对亚原子粒子进行了大量的研究,但科学家们仍然不知道原子内部会发生什么样的相互作用。
在这项新工作中,研究人员开始研究具有一个幻数(magic number)的元素,即那些具有高度稳定的质子和中子的元素,并使用铟-131(131In),它具有幻数中子和一个质子洞,其中核素的质子比传统的幻数元素少一个。不幸的是,131In也是出了名的不稳定,这意味着它在分解前只存在很短的时间,通常只持续0.28秒。
因此,研究原子核内的相互作用需要一种快速窥视的方法。他们开发的方法称为共振电离光谱法(resonance ionization spectroscopy);他们的设备用于测量物质和电磁辐射(electromagnetic radiation)相互作用过程中产生的电磁光谱。为了建立一个可以应用新方法的系统,他们必须有一些特殊的设备。他们在CERN的同位素质量分离器在线设备(Isotope Mass Separator On-Line Facility at CERN)上找到了他们需要的东西。
研究人员指出,他们的技术允许检测灵敏度低于每秒1000个原子,这意味着它也可以用于其他短寿命元素。他们认为,它可以用来绘图,显示给定原子的原子核(nucleus)是如何结合在一起的,以及原子内部发生的各种相互作用。他们计划通过使用他们的技术来进一步了解短命同位素的复杂性。
这项工作得到了ERC整合者{ ERC Consolidator Grant no. 648381 (FNPMLS)}、科学与技术设施委员会(STFC grants ST/L005794/1, ST/L005786/1, ST/P004423/1, ST/M006433/1 and ST/P003885/1)、欧内斯特·卢瑟福基金(Ernest Rutherford grant no. ST/L002868/1);美国能源部、科学办公室、核物理办公室(U.S. Department of Energy, Office of Science, Office of Nuclear Physics under grant DE-SC0021176)、鲁汶大学(GOA 15/010 from KU Leuven, BriX Research Program No. P7/12);比利时 (FWO-Vlaanderen, Belgium)、欧盟(European Unions Grant Agreement 654002,ENSAR2);中国国家重点研发计划项目(National Key R&D Program of China: contract no. 2018YFA0404403)、中国国家自然科学基金资助项目(National Natural Science Foundation of China: no.11875073);波兰国家科学中心(Polish National Science Centre under contract no. 2018/31/B/ST2/02220)、以及加拿大国家研究基金会接受加拿大国家研究委员会(TRIUMF receives funding by a contribution through the National Research Council of Canada)等机构或组织的资助。
上述介绍,仅供参考。欲了解更多信息,敬请注意浏览原文或者相关报道。
如何抓住魔术罐的尾巴(Grabbing magic tin by the tail)
In spite of the high-density and strongly correlated nature of the atomic nucleus, experimental and theoretical evidence suggests that around particular ‘magic’ numbers of nucleons, nuclear properties are governed by a single unpaired nucleon1,2. A microscopic understanding of the extent of this behaviour and its evolution in neutron-rich nuclei remains an open question in nuclear physics3,4,5. The indium isotopes are considered a textbook example of this phenomenon6, in which the constancy of their electromagnetic properties indicated that a single unpaired proton hole can provide the identity of a complex many-nucleon system6,7. Here we present precision laser spectroscopy measurements performed to investigate the validity of this simple single-particle picture. Observation of an abrupt change in the dipole moment at N=82 indicates that, whereas the single-particle picture indeed dominates at neutron magic number N=82 (refs. 2, 8), it does not for previously studied isotopes. To investigate the microscopic origin of these observations, our work provides a combined effort with developments in two complementary nuclear many-body methods: ab initio valence-space in-medium similarity renormalization group and density functional theory (DFT). We find that the inclusion of time-symmetry-breaking mean fields is essential for a correct description of nuclear magnetic properties, which were previously poorly constrained. These experimental and theoretical findings are key to understanding how seemingly simple single-particle phenomena naturally emerge from complex interactions among protons and neutrons.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 09:38
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社