|||
氙-124创造了半衰期新记录
諸平
据美國化學會主辦的《化學工程與新聞》(C&EN)網站2019年5月4日報道,科學家在暗物质实验研究過程中,意外發現了氙-124(124Xe)罕见的放射性衰变半衰期。
Credit: XENON Collaboration
与124Xe的半衰期相比,整个宇宙的历史不过是一个转瞬即逝的瞬间。令人震惊的是,124Xe的半衰期达到了1.8×1022年,是迄今为止直接测量到的最长的半衰期——大约是宇宙年龄的1万亿倍。相關研究結果于2019年4月24日已經在《自然》(Nature)杂志網站發表——XENON Collaboration. Observation of two-neutrino double electron capture in 124Xe with XENON1T. Nature, 2019, volume 568, pages 532–535 (Published: 24 April 2019). DOI: 10.1038/s41586-019-1124-4。
(XENON1T detector at Italy’s Gran Sasso National Laboratory,如图所示)。在今年早些时候退役之前,该探测器包含3.2吨液态氙,其目的是在寻找暗物质粒子的迹象。暗物质粒子被认为是宇宙中大量不可见物质的来源。每1000个氙原子中只有一个是124Xe同位素,它被预测会通过一种罕见的途径衰变为碲-124(124Te),这种途径被称为双中微子双电子捕获(two-neutrino double electron capture)。当原子核中的2个质子同时捕获原子自身的2个电子时,它们就转变成中子并释放出2个中微子。这个过程也会产生x射线和电子,这些电子可以被XENON1T接收。该装置在一年内探測到126个此類事件,使研究人员能够计算此同位素(124Xe)的半衰期。苏黎世大学(University of Zurich)的Laura Baudis是XENON1T的负责人之一,她说:“这显示了探测器前所未有的灵敏度。”虽然实验尚未发现任何暗物质,但一个更敏感的后续物质8.4吨氙正在形成,它可能会发现一个更罕见的衰变途径,预计为136Xe。更多信息請注意瀏覽原文或者相關報道。
Two-neutrino double electron capture (2νECEC) is a second-order weak-interaction process with a predicted half-life that surpasses the age of the Universe by many orders of magnitude1. Until now, indications of 2νECEC decays have only been seen for two isotopes2,3,4,5, 78Kr and 130Ba, and instruments with very low background levels are needed to detect them directly with high statistical significance6,7. The 2νECEC half-life is an important observable for nuclear structure models8,9,10,11,12,13,14 and its measurement represents a meaningful step in the search for neutrinoless double electron capture—the detection of which would establish the Majorana nature of the neutrino and would give access to the absolute neutrino mass15,16,17. Here we report the direct observation of 2νECEC in 124Xe with the XENON1T dark-matter detector. The significance of the signal is 4.4 standard deviations and the corresponding half-life of 1.8 × 1022 years (statistical uncertainty, 0.5 × 1022 years; systematic uncertainty, 0.1 × 1022 years) is the longest measured directly so far. This study demonstrates that the low background and large target mass of xenon-based dark-matter detectors make them well suited for measuring rare processes and highlights the broad physics reach of larger next-generation experiments18,19,20.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-27 23:10
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社