每个人的一生都会经历很多,从出生到长大 ,健康到衰老疾病 。你的出生、遗传、家庭环境、很大程度上决定的人生起点,日常的饮食、行为习惯决定你的身体成长,一些不同的选择或意外的事件又会让人生有很多起伏和不同。 每个人的菌群和我们的人生一样也是独一无二的,我们菌群的特点反映着不同人各自生活的烙印 。从母亲的腹中开始影响和决定了我们最初的菌群,出生方式、喂养的食物、用药 等都决定了我们的菌群基数。当我们开始从喝奶到开始摄入辅食,我们的菌群也同样迎来巨大的演变。当我们生病、感染、运动、饮食、社交、虚弱、衰老这些同样反映在我们菌群的变化和演替 上。 相对的,当我们更多的了解我们的菌群,善待和改善它们,同样的变化也会出现在我们的身体和生活中。
越来越多的证据表明,年龄与人类微生物群之间的关联很大,肠道微生物群是许多年龄相关变化的核心 ,包括免疫系统失调 和疾病易感性 。几个身体部位的微生物组成可以相对准确地预测 人类的年龄。
谷禾健康肠道菌群检测数据库中,也有关于肠道年龄预测:
谷禾健康-肠道年龄预测模型图
<来源:谷禾健康肠道菌群数据库>
可以看到,肠道年龄和生理年龄基本是符合 的。健康 人的肠道菌群年龄恰恰是最符合真实年龄 的,与真实年龄差异大 意味着肠道菌群出现偏离 。
健康的人存在更 多样化且平衡 的肠道菌群。微生物群中与年龄相关 的变化归因于生理,生活方式和健康状况 。这些因素中的每一个都与某些菌群的相对丰度变化有关。
例如,饮食、卫生、兄弟姐妹、宠物、过敏、儿童疾病和抗生素是影响儿童 微生物组的一些突出因素。到了成年期 微生物群相对稳定,而到了老年期 ,一些有益菌开始逐渐下降,菌群又向另一个阶段过渡。
在从出生到死亡和分解 的每个生命阶段,微生物群落都是身体的动态组成部分 。研究微生物群的自然和诱导变化 有可能彻底改变我们对人类生物学的理解。
本文介绍了健康人的微生物群在一生 中的变化,讨论了从出生 时菌群构成,到疾病或抗生素使用 时的变化,再到死亡 时的微生物扩展的各个阶段,以及这些阶段在身体部位 和组成 (细菌、真菌或病毒)上的差异 。了解微生物群与年龄关系的未来研究方向 ,以此对人体微生物群及基于此的干预有更好的了解。
01 人体内的微生物群
微生物群落存在于人体的每个粘膜表面 ,人的每个身体部位都有一个独特的生态学 。每个人的微生物群像指纹一样,都是独特的 。
在个体内,特定的身体部位 、地理位置 和个体的年龄 与健康微生物群具有极 强的关系 。年龄驱动人类微生物群的α多样性 和β多样性 。
在了解各个阶段的微生物群变化之前,我们先了解一个概念:微生物演替。
微生物演替是指微生物群落 中一种或多种生物的存在 、相对丰度 或绝对丰度 的变化 。
在正常或健康衰老期间,微生物演替的三个主要阶段 自然发生在人类生活中。
三大不同阶段的微生物群变化
✦初级演替(出生时先锋菌群定植,快速变化直到童年晚期)
第一阶段,初级演替,从先锋物种 首次建立群落时开始,随后微生物群落发生快速变化 。从出生到童年, 变化率 降低 ,许多中间物种 存在于出生到童年晚期之间。
初级演替结束于 顶级群落的形成,在青春期 实现,并在很大程度上持续到成年;该群落的特征是其相对稳定 。
虽然成年期 的微生物群比儿童期更稳定 ,但仍然存在变异,这引发了关于人类微生物群中是否存在顶级群落的争论。成年微生物群的自然变异 存在于小时(昼夜节律)到年(老化)的时间尺度上,但微生物群相对稳定 ,除非存在干扰,如饮食或药物的 改变 。
✦次生演替(菌群的改变,重建)
下一个阶段,即次生演替,发生在一个先前存在的稳定群落一部分被改变或移除 之后,然后群落再生 到相同 的状态或不同 的状态。这可以通过抗生素等医疗手段人为实现 ,也可以通过霍乱弧菌感染等疾病自发 实现 。
人类的次生演替的特征是至少有一段时间的 随机 过程 占主导地位 。在诱导 条件下,如单疗程抗生素,群落遵循类似于初级演替的过程,其中现有微生物群落的一部分充当“微生物记忆” ,帮助重建 一个类似于以前存在的群落。
这一过程被认为是由核心微生物群驱动 的,而不是驱动初级演替的先锋微生物。
✦末期演替(自然衰老和死亡阶段)
最终的末期演替是宿主自然衰老 和死亡的一部分。在老年期间,微生物群落再次以更高的变化率, 成功产生了一个由更少成员 组成的群落,通常变形菌门 (也称为假单胞菌)的相对丰度增加 ,有时占总优势。
研究演替的每个阶段使研究人员能够解决与人类相关的微生物群落是如何形成 和维持 的。通过了解这些过程,我们可以更好地了解微生物群随着 年龄的增长的变化 及其与人类健康 的关系,了解如何管理微生物群 。
人类相关微生物群从受孕到死亡的变化
Martino C,et al.Nat Rev Microbiol.2022
常驻细菌、真菌和病毒的多样性 在人类生命的各个阶段 都会发生变化 。模拟时钟代表每个微生物群落阶段发育的宿主年龄的相对时间。
免疫印记在出生前通过母亲的微生物群 及其代谢物开始(第一栏)。先锋物种的初始定殖始于出生 ,身体部位特定的微生物群落出现(第二栏)。这些群落的复杂性不断增加 ,直到它们达到相对稳定的群落结构(第三列和第四列)。
这些微生物群落的次生演替可能来自内部 和外部扰动 (第五栏)。中间微生物重新建立 初始群落,并再次达到稳定状态 (第六列和第七列)。
在晚年,随着寄主接近自然死亡,群落经历了最后的演替和变化(第八栏)。微生物演替的最后阶段发生在腐败和分解阶段 。在此阶段,多样性进一步下降,在最初的24-48小时内,许多人类微生物群结构保持不变,但随后很快开始侵蚀分解(第九栏)。
绿线和蓝线分别显示了微生物演替 不同阶段的适应性免疫 和先天免疫 的相对强度 。
不同年龄段的细菌多样性测量
Martino C,et al.Nat Rev Microbiol.2022
美国一个肠道项目集中测量了从儿童到老年的人类粪便(a部分)、口腔(b部分)和皮肤(c部分)微生物群的细菌多样性 和系统发育史 ,该项目包含21919个粪便、1920个口腔和998个皮肤微生物群样本,带有16S核糖体RNA基因扩增子序列。
α多样性,一种对样本中不同类型微生物数量的定量测量,通过Faith的系统发育多样性(PD)α多样性度量跨年龄测量 。
UniFrac β多样性主坐标分析,一种用于比较微生物群落相似性 的方法,其中空间上接近的点表示相似的样本 ,空间上远离的点表示不同的样本 ,按年龄着色。
02 生命早期的“先锋菌群”
✦胎儿时期——菌群及代谢物影响免疫发育
塑造人类微生物群的第一个因素 来自胎儿发育过程中的母亲。
胎儿通过胎盘接触到母亲微生物群落产生的代谢物,这些代谢物 会影响其免疫系统,并会影响正常微生物群和后期病理学的各个方面。代谢物,如短链脂肪酸(乙酸盐)和其他微生物化合物,可以通过胎盘转移到胎儿体内,并影响免疫发育 。母亲的饮食和健康 也会影响这些代谢物。
胎儿组织中的乙酸盐影响 与成人调节性T细胞生成相关的表观遗传印记,其与防止生命后期哮喘 的发展相关。
✦出生后——菌群受出生模式,饮食,环境等影响
出生后,微生物群落根据身体部位迅速分化 。
在最初的时候,先锋物种和未来4年的群落发展可能会受到出生模式 和妊娠时间 的影响 。中间群落由饮食影响,如母乳或配方奶粉的消费,以及环境。
最后,饮食和环境再次塑造 了稳定的顶级群落 。主要由真菌、细菌和病毒组成。
子宫内和生命早期的主要演替
Martino C,et al.Nat Rev Microbiol.2022
微生物代谢物和配体调节 宿主芳基烃受体,这有助于 塑造 新生儿微生物和免疫发育。母亲使用抗生素和胃肠道相关疾病,如炎症性肠病,也被认为会通过胎儿免疫系统的印记增加 后代的病理风险 。
然而,这些联系仅在非人类实验中研究过。在一个案例中,由患有炎症性肠病的孕妇或其新生儿的微生物群所定殖的无菌小鼠继续发展出异常微生物群 和指示炎症性肠病的免疫发育 。
✦怀孕期间母体的微生物群与免疫系统的变化
在怀孕期间,母亲的微生物群 和免疫系统 也发生了改变 。母亲的阴道微生物群变得更加多样化 ,通常由在其他身体部位发现的许多微生物群组成。
孕期母体免疫系统与胎儿形成协同作用 ,包括通过胎盘转移IgG抗体 。
新生儿先锋细菌的定植
关于出生时获得的微生物群 是否通过混合来源 于阴道和粪便,或者阴道微生物群本身在出生时是否具有多能性 ,是否是微生物先驱的主要来源 ,存在一些争议。
无论确切的母体来源如何,这一阶段的特征是先锋细菌种类。包括下列菌群:
Lactobacillus
Enterobacter
Escherichia
Bacteroides
Parabacteroides
Prevotella
然后这些细菌 定居 在常规身体部位:肠道、口腔和皮肤 。
许多先锋细菌是兼性厌氧菌 ,它们会消耗氧气 ,从而使专性厌氧菌 能够在以后的每个环境中定居 。起初,新生儿的每个身体部位都相对未分化 ,但先锋微生物很快开始启动 身体部位依赖性微生物多样性的级联,至少在生命的第4到第6周 ,每个部位的细菌都可以很容易地区分 。
先锋细菌进驻后,生命早期的微生物群逐渐开始形成。接下来的章节我们来了解生命早期的肠道,口腔,皮肤 等各部位的微生物群(包括细菌、真菌、病毒等)。
03 生命早期的各部位微生物群特征
肠道微生物群
✦肠道细菌群——双歧杆菌主导
人类肠道细菌群落 的发展已经得到了很好的研究。
双歧杆菌属 一直占主导地位 ,直到在生命的第一年结束时,它们被双歧杆菌、梭状芽孢杆菌和拟杆菌属的组合所取代 。拟杆菌属的丰度增加 ,而双歧杆菌属等物种的丰度相对减少。
双歧杆菌分解母乳低聚糖,开始终生影响免疫系统
最近,一项研究发现,双歧杆菌 等细菌含有母乳低聚糖分解代谢所需的基因,与婴儿 免疫发育 之间存在功能联系 。特别是,接受Bifidobacterium infantis EVC001 极化初始T细胞的婴儿的粪便水与来自对照组的粪便水平不同 ,其方式与减少肠道炎症 有关。
其他菌属也可降解母乳低聚糖(如拟杆菌、阿克曼菌)
到3-6岁时,肠道细菌群落汇聚到整个成年期持续的顶级群落。这一微生物群是已知的密度最大 、多样性最强 的生态群落之一。通常,在这段时间内,普通健康人中只有两个细菌门占优势:厚壁菌门和拟杆菌门 。
✦肠道其他微生物群——真菌、古细菌、病毒
在人类肠道发育过程中,对病毒组 、真菌组 和古菌组 的研究远远少于细菌组。在整个生命周期中,真菌群落所占的总数远远 少于 细菌组或病毒组。
/ / 真菌群落
真菌群落在生命的最初几天含有大量的 Rhodotorula和Debaryomyces,接下来的一个月则是CandidaCryptococcus和Saccharomyces spp.。
到成年时,主要的真菌属 是Aspergillus, Candida和Saccharomyces。
/ / 古细菌群落
发育期间肠道的古细菌群落尚不清楚,但古细菌是一些最早 的移生菌落 ,但丰度较低 。
早期定植的古细菌包括Methanosphaera 和Methanobrevibacter 。
/ / 病毒群落: 噬菌体家族在出生后就开始流行
主要由噬菌体组成的病毒群落在出生后的第一周数量众多 。噬菌体家族Siphoviridae、Podoviridae和Myoviridae在出生后立即流行 ,主要以溶原形式 整合到细菌基因组中。
到生命的第四个月,有尾噬菌体目大量生长 ,成员更常为裂解型 (传染性噬菌体颗粒或主动复制的噬菌体)。
在成人中,Caudovirales和Microviridae在肠道噬菌体群落中占主导地位 ,但噬菌体肠道病毒组对个体具有高度特异性 ,其演替仍有许多未知之处。
与噬菌体不同,感染真核病毒的肠道病毒组主要与儿童和成人的病理相关 。最近,在健康儿童和健康成人中也观察到一些感染真核细胞的病毒 丰度较低 ,但其发生时间和流行率尚不清楚 。
口腔微生物群
✦口腔细菌群:出生后几个月逐渐趋于稳定,牙齿形成后再次转变
在出生时 ,口腔细菌群 在以下菌属中的流行率很高 :
Streptococcus
Gemella
Granulicatella
Veillonella
在接下来的几个月里,Lactobacillus和Fusobacterium也开始流行 。Staphylococcus的丰度在出生后3个月左右达到峰值 ,然后稳步下降, 让位与更高丰度的 GemellaGranulicatella, Haemophilus和Rothia spp.
牙齿形成后,口腔微生物群再次转变 ,在成年期具有更高丰度 的梭杆菌门, Synergistetes, Tenericutes, Saccharibacteria (TM7), SR1 。
✦口腔其他微生物:成年口腔含产甲烷菌,最常见的 噬菌体群是尾状病毒
口腔真菌群落被认为比皮肤和内脏的真菌多样性少 。Candida spp.是口腔的第一批 真菌定植菌。对中级口腔真菌群落知之甚少,但成年人CandidaCladosporiumAureobasidium
AspergillusFusarium和Cryptococcus spp.的丰度 较高 。
发育过程中的口腔古菌体尚不清楚,但成年口腔中含有许多 古菌产甲烷菌 ,包括甲烷杆菌属。
目前对人类婴儿口腔中病毒的知之甚少。在成年人中,与肠道类似,最常见的 噬菌体群是尾状病毒。
口腔病毒群在本质上通常被视为病理性 的(例如柯萨奇A病毒、麻疹病毒、红疹病毒和人乳头瘤病毒),并且没有对病毒群落组成进行纵向研究。然而,在无症状和健康成人中也观察到许多真核病毒 分类群。
皮肤微生物群
✦皮肤细菌群落:出生时母亲阴道乳杆菌属占据较多,4-5周与成人相似
皮肤细菌群落在出生时含有大量的 母亲阴道乳杆菌属。到第4-5 周,婴儿皮肤微生物群与成人皮肤微生物群相似 ,但在青春期继续变得更具位点特异性 。
Staphylococcus 和Corynebacterium 在不同位点 PseudomonasEnterobacterEnterococcus,
Proteus 和Klebsiella 在特定位点 (如腋窝与前臂)。
✦皮肤其他微生物:马拉色菌占比较高,古细菌占4%左右
在皮肤真菌群落中,MalasseziaCandida 和 Saccharomyces 在生命的前30天最为普遍 。对于中间群落的确切组成知之甚少,但成年真菌群落中Malassezia 的丰度 通常很高 ,估计约占真菌群落总组成的75%至90% 。
关于皮肤古细菌群落的发育情况了解较少,但古细菌约占成年人菌群的4% 。大体上,成年人皮肤古细菌群由Thaumarchaeota门和Euryarchaeota门代表 。在成人皮肤上也发现了Halobacteriaceae 和 Methanobrevibacter 。
与肠道和口腔不同,健康的皮肤微生物群拥有相对较少 的已知病毒多样性,很少 有对其进行研究,可能是由于与低生物量样本相关的技术限制。不过,皮肤上有一些自然存在 的病毒群 。
以上了解关于生命早期肠道、口腔、皮肤的微生物群,那么哪些因素会给生命早期的微生物群发展带来影响?
影响早期微生物群落发展的因素
在生命的最初几年中,有几个因素塑造并区分 了微生物群落的发展。
✦出生方式和母体抗生素的使用
出生方式和母体抗生素的使用是影响人类微生物群落的研究最好 、最清楚 的因素之一。然而,微生物的发育可能会导致 独特的结果,即使是在同居的同卵双胞胎中,这可能是由于许多未知或随机 的过程。
通过剖腹产和围产期和新生儿抗生素暴露,自然微生物群落的建立过程可能会在所有身体部位受到干扰 。这一发现突出了阴道微生物群落 的重要性 ,阴道微生物群落自然含有大量 Lactobacillus spp. ,但在青春期发生改变 ,对女性健康至关重要 。
一些最佳样本的婴儿发育研究,通常缩写为DIABIMMUNE ECAM和TEDDY,在婴儿出生后的前2年 和3年 进行了随访,重点关注抗生素使用 或出生方式 的影响 。
在上述所有研究中,阴道分娩的婴儿的拟杆菌属 相对丰度高于 剖腹产婴儿。
由于缺乏 建立微生物群落的天然先锋微生物群 ,导致 可变的群落组成被认为是由随机过程而不是确定性过程驱动的,出生模式 对微生物群落组成的 影响 直到生命的第四年 仍然可见。
出生模式影响的一个例外是早产 ,可能是由于在出生后的头几天大量使用抗生素 ,其特点是无论出生模式如何,微生物发育都不稳定 。婴儿微生物群自然发育的这种改变与感染、免疫疾病、肥胖和神经 内分泌异常 的风险增加 相关。
✦母乳喂养:母乳低聚糖给菌群带来稳定性
其次,与其他因素相比,母乳喂养对微生物群的发育有很大影响 。与母乳喂养相比,配方奶粉 的使用导致了更高 的多样性 和更不确定 的微生物群落。
例如,考虑到出生时肠道中双歧杆菌科 的自然优势 ,缺乏某些母乳低聚糖 作为主要营养源可能会导致 初始定植的不稳定性 。然而,微生物群、牛奶代谢组和免疫系统发育的多组学整合是一个活跃且快速发展的研究领域。
除了母乳低聚糖,母乳 还含有其他免疫调节化合物 ,例如革兰氏阴性细菌的脂多糖、分泌性IgA、先天免疫因子、抗菌肽和益生元因子。
最后,所有这些因素都会影响人类免疫发育 。微生物相关分子模式识别受体与微生物群衍生分子相互作用 ,代谢物如短链脂肪酸(与GPR43、GPR41和GPR109相互作用)和次级胆汁酸(与FXR相互作用)直接影响免疫发育 。
//
这些因素加在一起,有助于 形成一个独特的、相对稳定的细菌、真菌和病毒微生物群落 ,这种微生物群落在人类生命的大部分时间都持续存在 。
04 成人微生物群的变化
前面章节了解了婴儿期初级演替期间发生的巨大变化,与之相比,成年期微生物群基本上是稳定的 (15-65岁),但该群落可能会受到干扰 ,因此本章节从以下三方面展开讨论:
菌群的自然稳定波动(昼夜节律,饮食,清洁等)
菌群受到某些因素的干扰(药物、疾病等)
微生物群受干扰后的恢复
成年微生物群的自然稳定波动
健康成年人中某些细菌的基因组随着时间 的推移而进化 ,表明在次生演替中,功能 和组成 进化以稳定状态 发生。
• 昼夜节律影响菌群变化
成人微生物群也会发生自然的短期变化 ,时间尺度为一天到数月或数年。
短期变化的一个典型例子是微生物群落组成的昼夜节律 。与昼夜节律相关的人类基因表 达 和免疫激活 ,以及肠道微生物群中细菌的丰度 和组成 也遵循这种模式。
在小鼠中表现出昼夜循环 的细菌家族包括瘤胃球菌科 、毛螺菌科 、Muribaculaceae 和疣微菌科 ,但对人体的等效周期知之甚少。
青春期和成年生活中的二次演替
Martino C,et al.Nat Rev Microbiol.2022
• 口腔和皮肤的微生物群随清洗而变化
在口腔中,整组真菌和细菌的每日振幅 与刷牙频率 一致。在皮肤上,真菌和细菌每天的变化 也与洗涤频率 一致,并依赖于个人护理产品。
• 饮食会影响肠道微生物群
一个经过充分研究的发生在几周到几年范围内的变化的例子是饮食驱动的肠道微生物群的改变。饮食 对微生物群落有很大影响 ,可以包括群落中的自然 和可逆变化 。
例如,坦桑尼亚哈扎部落在旱季食用富含肉类和块茎 的饮食,但在雨季食用富含蜂蜜和浆果 的饮食,在拟 杆菌等属 中表现出较大 的季节波动 。
饮食对微生物群形成的巨大影响 也可能在人类健康 中发挥作用,许多工作致力于了解特定的饮食成分 和总体饮食模式 如何影响微生物群 及其对健康的影响 。
肠道细菌喜欢大量的水果、蔬菜、全谷物、橄榄油 等健康食物。研究表明,饮食主要由富含纤维的食物(如地中海饮食 )组成的人具有更大的微生物组多样性,并且通常更健康 。
此外例如,西方饮食中红肉含量高 ,这与全因死亡率 有关。肠道微生物群可能以有害的方式 将红肉中富含的左旋肉碱转化为三甲胺,而肝脏则将三甲胺转化为三甲胺氮氧化物,据推测这会促进动脉粥样硬化 。
肠道微生物群也可以起到保护作用 ,例如,在红肉被肠道吸收之前将其分解,以防止炎症 。除了饮食,还有许多其他因素有助于 形成成年微生物群,包括遗传学、地理、宿主因素,如代谢病和药物。
微生物群受到干扰
• 抗生素对微生物群的影响巨大
由于微生物群的破坏而发生的次生演替已被广泛研究和审查。在破坏微生物群的众多因素中,抗生素 是最强的 ,治疗后的恢复率往往各不相同 。
抗生素治疗后肠道微生物 群反弹 的能力被认为取决于 特定的群落成员 ,如拟杆菌和青春双歧杆菌。
扩展阅读:抗生素对微生物组及对人体健康的影响
细菌的天敌抗生素,如何用好这把救命的双刃剑?
疾病 本身也会破坏微生物群 ,无论这种变化是由微生物群落内部、宿主还是多种因素共同引起的。
• 疾病破坏菌群
——肠道:炎症破坏菌群
肠道中的许多其他疾病,如炎症性肠病,破坏 了微生物群落,但没有达到新的稳定群落组成,而是在没有干预的情况下继续长期不稳定 。
——皮肤:炎症引起金黄色葡萄球菌大量增殖
在皮肤上,特应性皮炎的特征是免疫介导 的炎症引起 的金黄色葡萄球菌大量繁殖 和细菌多样性减少 。在金黄色葡萄球菌大量繁殖期间观察到马拉色菌属的数量减少 ,反之亦然,真菌数量增加导致 金黄色葡萄菌数量减少 ,这部分可能是由于真菌产生蛋白酶的能力,蛋白酶消化 金黄色葡萄球菌生物膜并降低 细菌逃避免疫系统的能力。
——口腔:细菌和真菌间的竞争和协同
口腔中也存在类似的跨界相互作用 ;例如,真菌白色念珠菌的定殖依赖于 细菌生物膜,但同时,Pseudomonas和Staphylococcus等细菌属分别形成竞争 和协同关系 。
这些例子强调了微生物群落的相互作用 和演替是如何跨域 和与宿主作用的,但由于其高阶相互作用的复杂性质,仍然没有完全理解。
微生物群落的恢复
干扰后微生物群落恢复的障碍导致许多研究人员探索有针对性地恢复微生物群落 的干预措施的可能性。微生物群落恢复包括定向重新播种 或某些物种的富集 或耗竭 ,旨在 促使微生物群落恢复到接近扰动前的水平。
这可以通过益生菌 、益生元 、抗生素 或其他药物、从健康个体移植 完整的微生物联合体或这些的组合来尝试。
尽管这些疗法在某些特征明确 的环境中可以非常有效 地恢复健康 的微生物群落,但它们往往因缺乏 与现有群落相互作用的机理知识,或因其仅短暂移植的能力而受到限制 。
为了解决这些,研究集中在两个领域:
第一个领域涉及更好地了解群落是如何组合 的。例如,对人类发育的研究有助于 确定微生物群落在发育过程中如何聚集 ,以及这种聚集在生命后期 的影响 。
其次,正在开发新方法,通过探索微生物群落相互作用 来确定机制 ,包括计算和实验,包括高通量共培养和微生物群落的基因组编辑。
为了解决瞬时性问题,采用了两种主要方法:
首先,微生物群疗法的短暂和个性化影响 是由每个人的微生物群的个体性质 决定的。因此,精准医学 将群落改变 的目标定位于每个人独特的微生物群 ,前景广阔。例如,基于微生物群落组成的个性化营养在盲法随机对照干预中有效地改善 了餐后血糖。
另外,超越细菌组,探索病毒组 和真菌群 落及其之间的相互作用 ,具有巨大的前景。例如,噬菌体疗法已经用于严重的耐药细菌感染,并且对目标细菌菌株具有高度特异性 。但大多数此类干预措施仍处于初步研究阶段,且规模成本高昂。
05
老年微生物群的特征
前面章节我们了解了成年微生物群的变化,以及变化后的恢复情况等,成年稳定微生物群在老年时转变为最终群落 ,本章节来详细了解老年微生物群。
“老年”的确切时间尺度取决于 其他几个与宿主相关的因素,如疾病,但迄今为止大多数文献将“老年人”定义为65岁及以上 的人。
接近寿命终点的晚期演替
Martino C,et al.Nat Rev Microbiol.2022
由于生物编程和生命中损伤的累积而导致 的衰老 影响细胞功能 的各个方面,微生物群也不例外。随着年龄的增长,肠道微生物群α多样性减少 ,β多样性 增加 。
关于老年微生物群 ,仍有许多未知之处,而文献也有些矛盾(一项报告称65岁及以上成年人拟杆菌数量增加,与其他研究相矛盾),大多数研究都集中在肠道细菌 上。
老年微生物群:年轻优势菌丰度减少
一般而言,肠道中观察到的群落演替是年轻成年人中占优势和普遍的细菌属丰度减少 ,如Bifidobacteria, Bacteroides , Lactobacillus , 抵御机会细菌爆发的能力降低 。
• 皮肤
在65岁及以上的人群中,genera Cutibacterium和Staphylococcus的皮肤细菌数量 减少 ,同时观察到 的Corynebacterium。
• 口腔
在口腔部位,Rothia和Streptococcus spp.是核心口腔细菌群落 ,PorphyromonasTreponema和Faecalibacterium spp.的数量持续减少 。
• 肠道
老年期肠道真菌群落的特征是Penicillium, CandidaAspergillus和Saccharomyces spp.的优势度增加 。
在皮肤和口腔部位的研究很少 ,但老年期皮肤上的Malasseziaspp.和口腔内的Candidaspp.丰度减少 。
在肠道噬菌体中,成年期的Siphoviridae占主导地位 ,而老年期的Microviridae 和Podoviridae 则占主导地位 。与肠道细菌、真菌和噬菌体群体相比,真核病毒的多样性 在童年后和整个余生中保持不变 。
研究重点
由于个体之间的高度变异性 ,老年微生物演替的研究重点主要是比较健康 和不健康 的衰老。
目前尚不清楚 微生物群是否在健康衰老中起着机械作用,还是仅仅是其他变量的一个有力指标,如饮食、运动和药物 。然而,在那些长寿健康的人中,可以观察到在健康成年人中高度流行的菌群的持续保留 方面的共同点。
然而,百岁老人 表现出更独特 的微生物群,α多样性增加 ,群落组成的个体间差异更大 ,使“健康”和“不健康”年龄之间的比较复杂化 。次生胆汁酸 在百岁老人中含量丰富 ,也可能在健康老龄化中发挥作用。尽管前景看好,但这一研究领域仍处于起步阶段。
06 死亡后的微生物群落
• 微生物的演替不会 随着个体的死亡而结束
宿主的死亡可以视为微生物群的生态干扰 。心脏停止后,组织立即因缺氧而开始分解 。细胞功能持续 ,直到所有剩余的氧气耗尽,二氧化碳不再能够从组织中运输为止。细胞内二氧化碳的积累创造了一个缺氧的酸性环境 ,导致 细胞破裂。
细胞成分,例如酶会泄漏 到周围环境中,在被称为“自溶”的过程中进一步促进组织分解 。自溶通过消除免疫系统 、松开细胞连接 并为微生物群提供营养 ,触发 了一系列负责组织分解的微生物过程。
死亡后的微生物群
Martino C,et al.Nat Rev Microbiol.2022
• 死亡后微生物群分解
人类微生物群在死亡后的前24-48小时内相对稳定 ,具有不同的 身体部位微生物生态、年龄的α多样性模式和可识别的个性化皮肤微生物群特征。
在分解的最初几天到几周内,腐败主要由细菌 进行,但随着分解的进行,真菌 的作用 增加 。然而,在这个过程中,对病毒组的演替 和功能作用 了解甚少。
随后,环境变化 促进 了微生物的演替,改变 了人体和微生物群,不再像活着的个体(除非身体被冷冻)。
由于缺乏 宿主生活中先前遇到的环境限制,使得微生物的相对丰度 发生了快速变化 以及在身体各部位的移动 。迁移的细菌群成为从肠道转移到肠外部位的先锋物种 ,根据身体部位参与初级演替或次级演替。
• 死亡微生物群——生物指示器
死亡微生物群 因其对法医调查 的影响而引起了越来越多的关注。与多个个体和身体部位相关的一致的时间序列模式证明,死后微生物群可以作为死后间隔的生物指示器 。
每个尸体的死后微生物群都是独一无二 的,并且根据死亡时间、死因、环境、死亡地点和年龄以及开始时身体部位之间的差异 ,尸体之间的微生物群是不同的 。
当微生物演替包括群落成员的快速更替时,在分解的早期阶段(即死亡后的前2-3周),死后时间间隔估计更为准确 ,但在分解的后期阶段(例如骨骼)仍然有用 ,因为几乎没有 证据可以估计死后时间间期。
• 死亡原因与微生物群存在联系
还证明了与死亡原因和微生物群存在的联系 。例如,在死于心脏病的个人的口腔微生物群 中发现了 的Rothia spp. 。
此外,皮肤微生物群脱落可能通过将个人与他们接触过的物品联系 起来,从而有助于 追踪证据;然而,这一独特特征能够准确匹配到个体的时间取决于 对象的材料和用途。
07 关于微生物群研究中的 取样和实验设计
研究设计和样本收集
人类微生物群是动态的 。考虑到这一点,设计一种能够捕捉微生物群的时间 和空间变异性 的采样策略非常重要 ,特别是当这些波动与所提出的科学问题相关时。
✦测量时间不同:多个时间点的样本采集
横断面研究从每个个体 收集一个样本,而重复测量研究在多个时间点 或身体部位 收集样本。随着时间的推移,采样频率应该调整到研究人员试图观察的现象。
例如,小鼠昼夜节律研究通常每2-4小时收集一次粪便样本;而在炎症性肠病中,在一周内对患者进行三到五次采样可以改善 疾病分类。
在其他应用中,例如研究特定治疗对个体微生物群的影响,这可能与进行“一对一”研究有关,在该研究中,同一参与者被反复检测 其微生物群的结果变化;治疗前采集的样本被视为个体水平的对照。
✦测量空间不同:城市化/农村环境不同
同样重要的是要考虑到人口的微生物群高度依赖 于地理 和种族 。
例如,在一个大型中国群体中,一种与年龄高度相关 的微生物在一个美国大型群体中根本没有 检测到。
另一个具体的例子涉及城市化社会的“建筑环境”;城市化人群通常较少接触 环境微生物,更多地使用家用抗菌剂,与来自农村社会的人类微生物群相比,这导致了重大变化 。
这些考虑因素与微生物群领域尤其相关 ,因为大多数公共微生物群数据来自城市化的北美和欧洲人。因此,现有数据集的结论可能无法很好地推广到全球人口。
数据生成
从人类微生物群和微生物群研究中生成的测序数据的主要类别 是扩增子测序数据和鸟枪测序数据。
✦扩增子测序
在扩增子测序中,对已建立的高变区的PCR产物(扩增子)进行深度测序 ,从而能够通过与个体“条形码”匹配来识别 和测量 群体成员。
这里有两种选择:要扩增的基因和该基因的哪一部分要扩增。微生物基因组的常见扩增区域 包括:细菌的16S核糖体RNA基因、真核微生物的18S核糖体DNA基因和真菌的内部转录间隔区。
每个特定基因中高变区的选择取决于 要捕获的特定微生物,但广泛使用 的高变区包括来自地球微生物组项目的V4区。
✦肠道微生物群参与人体的调节
在鸟枪测序中,所有 微生物DNA都被测序,而不仅仅是PCR产物,从而能够对微生物进行更具体的分类。由于鸟枪测序不依赖 于任何标记基因,因此与扩增子测序相比,它对某些微生物的偏向性较小 。
然而,鸟枪测序的成本要高 得多,并且需要更大 的计算能力,这使得在不需要提高鸟枪序列分辨率的情况下,扩增子测序具有吸引力。
将测序数据与其他分析配对
结合其他技术进行扩增子或宏基因组测序可以丰富 对微生物群和宿主的理解。定量PCR 和荧光激活细胞分选 等技术通过将相对丰度锚定到可靠的 绝对丰度测量值 ,为相对丰度提供了更多的背景。
酶联免疫吸附试验 和单细胞测序 可以通过提供 宿主细胞类型或宿主免疫信息与宏基因组测序很好地配对 。
培养组学使研究人员能够通过实验验证功能或活性的基因组预测,并将微生物转化 为益生菌。微生物产生的代谢物或蛋白质,即微生物群的下游效应物,可以分别通过代谢组学 和蛋白质组学 进行探测。
最后,宿主基因组学 和转录组学 越来越多地与扩增子或宏基因组学数据配对,以深入了解宿主基因表达 和微生物群 之间的联系。
元数据收集
最后,从被调查的参与者那里收集数据至关重要 。一般微生物群研究的一些重要元数据类别包括人 口统计、临床信息和饮食信息 ;然而,使用的确切元数据因研究而异 。应采用产生标准化元数据的实践,以便结果可重复使用和再现 。
结论与展望
本文描述了目前对不同年龄 和不同身体部位 的人类常驻微生物群落 组成的研究现状。
人类健康 与微生物群组成 之间存在许多联系,对肠道菌群的干预可能改善健康。侧重于整个微生物群 而不是单一物种的富集或消除的干预措施,需要了解这些群落是如何形成 和维持 的。
不同人群年龄,不同部位 的微生物群需要依托于大样本数据库的构建 ,这为微生物群研究的准确性提供了保障。
通过研究人类整个生命周期中的微生物群,我们可以更好地了解这些微生物群复杂的相互作用 ,以及如何有效地 将微生物群推向宿主所需的组成。此外也正应用于除人类健康外的其他领域,如法医学。随着微生物群的相关研究不断突破,将给人类生命健康和生产生活带来巨大的影响。
主要参考文献:
Martino C, Dilmore AH, Burcham ZM, Metcalf JL, Jeste D, Knight R. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol. 2022 Jul 29. doi: 10.1038/s41579-022-00768-z. Epub ahead of print. PMID: 35906422.
Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002.
Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13, 183–189.
Helve, O. et al. 2843. Maternal fecal transplantation to infants born by cesarean section: safety and feasibility. Open. Forum Infect. Dis. 6, S68.
Seppo, A. E. et al. Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order mennonites with traditional farming lifestyle. Allergy 76, 3489–3503.
本文转自:谷禾健康
转载本文请联系原作者获取授权,同时请注明本文来自牛耀芳科学网博客。 链接地址: https://blog.sciencenet.cn/blog-2040048-1352729.html
上一篇:
[转载]以机器学习为框架搭建的能快速检索并获取宏基因组学已发表文章的元数据 下一篇:
[转载]生命早期肠道微生物群与儿童呼吸道疾病之间的关联