[1]Peinke J, Barth S, Boettcher F, et al. Turbulence, a challenging problem for wind energy[J]. Physica A, 2004, 338: 187-193.
[2]Frisch U. Turbulence[M]. 1st ed. Cambridge: Cambridge University Press, 1995.
[3]Noullez A, Wallace G, Lempert W, et al. Transverse velocity increments in turbulent flow using the RELIEF technique[J]. J Fluid Mech, 2000, 339: 287-307.
[4]Kolmogorov A N. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number[J]. J Fluid Mech, 1962, 13: 82-85.
[5]Castaing B, Gagne Y, Hopfinger E. Velocity probability density functions of high Reynolds number turbulence[J], Physica D, 1990, 46: 177-200.
[6]She Z S, Leveque E. Universal scaling laws in fully developed turbulence[J], Phys Rev Lett, 1994, 72: 336-339.
[7]Novikov E A. Infinitely divisible distributions in turbulence[J]. Phys Rev E, 1994, 50: R3303-R3305.
[8]Boettcher F, Renner C H, Waldl H P et al. On the statistics of wind gusts[J]. Boundary-Layer Meteorol, 2003, 108: 163-173.
[9]Liu L, Hu F. Probability density functions of velocity increments in the atmospheric boundary layer[J]. Boundary-Layer Meteorol, 2010, 134: 243-255.
[10]Liu L, Hu F. Cascade-like and scaling behavior of wind velocity increments in the atmospheric surface layer[J]. Physica A, 2013, 392: 5808-5816.
[12]Katul G G, Albertson J, Parlange M, et al. Conditional sampling, bursting, and the intermittent structure of sensible heat flux[J]. J Geophys Res, 1994, 99: 22869-22876.
[13]Liu L, Hu F, Cheng X L. Extreme fluctuations of vertical velocity in the unstable atmospheric surface layer[J]. Nonlin Processes Geophys, 2014, 21: 1-13.
[15]Mandelbrot B B. The Fractal Geometry of Nature[M]. 1st ed. New York: W H Freeman and Company, 1982.
[16]Schmitt F, Schertzer D, Lovejoy S, et al. Estimation of universal for atmospheric turbulent multifractal indices for atmospheric turbulent velocity fields[J]. Fractals, 1993, 1(3): 568-575.
[17]Xu J J, Hu F. Multifractal characteristics of intermittent turbulence in the urban canopy layer[J]. Atmos Oceanic Sci Lett, 2015, 8(2): 1-6.
[18]Liu L, Hu F., Huang S X. A multifractal random walk description of high-frequency wind speeds: multiscaling, long-tail distribution and intermittency[J], Boundary-Layer Meteorology,2019, doi: 10.1007/s10546-019-00451-6.
[19]Bunde A, Eichner J, Kantelhardt J, et al. Long-term memory: a natural mechanism for the clustering of extreme events and anomalous residual times in climate records[J]. Phys Rev Lett, 2005, 94: 048701.
[20]Santhanam M S, Kantz H. Long-range correlations and rare events in boundary layer wind fields[J]. Physica A, 2005, 345: 713-721.
[21]Liu L, Hu F. Long-term dependence and extreme wind speed estimation[J], Advances in Atmospheric Sciences, 2019, doi: 10.1007/s00376-019-9031-z
[23]Humphrey J A C, Schuler C A, Rubinsky B. On the use of the Weierstrass-Mandelbrot function to describe the fractal component of turbulent velocity[J]. Fluid Dynamics Research, 1992, 9: 81-95.
[28]Calif R, Schmitt F G. Modelling of atmospheric wind speed sequence using a log-normal continuous stochastic equation[J]. J Wind Eng Ind Areodyn, 2012, 109: 1-8.
[29]Baile R, Muzy J F. Random cascade model for surface wind speed[C].//Lehr J H, Keeley J. Alternative Energy and Shale Gas Encyclopedia. John Wiley & Sons, Inc., 2016: 153-162.
[30]Nawroth A P, Peinke J. Multiscale reconstruction of time series[J]. Phys Lett A, 2006, 360: 234-237.
[31]Lumley J L, Yaglom A M. A century of turbulence[J]. Flow, Turbulence and Combustion, 2001, 66: 241-286.
[32]Muzy J F, Bacry E. Multifractal stationary random measures and multifractal random walks with log infinitely divisible scaling laws[J]. Phys Rev E, 2002, 66:056121.
[33]Beck C, Cohen E G D, Rizzo S. Atmospheric turbulence and superstatistics[J]. Europhys News, 2005, 36(6): 189-191.