|||
KOCH分形的长度兼评分形真正的科学价值及其艰难前程
冯向军
2018/9/29
(一)KOCH分形的长度
假设L(n)是第n次迭代KOCH分形的长度,并假设第0次迭代KOCH分形的长度为1。
1.n=1
L(1)=(4/3)^1。
2.n=2
L(2)=4/9*4=(4/3)^2
3.n=3
L(3)=16/27*4=(4/3)^3
4.一般公式:
L(n)=(4/3)^n。
Koch分形长度L(n)随迭代次数n的变化详情如下所示。
(二)分形真正的科学价值与艰难前程
分形真正的科学价值是直面现实世界的大量复杂分形而給出其诸如长度和面积之类的测度。但是,要直面现实世界的大量复杂分形而給出其诸如长度和面积之类的测度,关键还在于給出这些分形的迭代公式。要給出这些分形的迭代公式,就必须全面掌握这些分形的成因。而分形的成因并非唯一,并且不都是能为数学迭代公式所描述的。因此分形科学的前程艰难。
现代泛系对分形的本质革命性新探
美国归侨冯向军博士
2018/9/12
分形树
Koch分形
(一)分形的真相
分形不是独立于整数维空间之外的分数维空间,因而其实体、真身、实在仍然是整数维空间。
现代泛系实在逻辑的基本思维法则是:
就实在而言,B中的A无A非A。
镜中花无花非花。
水中月无月非月。
电视机屏幕中的剧中人无人非人。
按现代泛系实在逻辑:
整数维空间中的分形,实在是无分形非分形。
(二)分形是整数维空间的一种新的自相似分割方法
将一 维空间中的线段一分为2,就得2个自相似线段。
将一维空间的线段一分为3,就得3个自相似线段。
...
将一维空间的线段一分为a,就得b=a1个自相似线段。
因此有公式:
a1=b (1)
将二维空间的正方形各边一分为2,就得4个自相似正方形。
将二维空间的正方形各边一分为3,就得9个自相似正方形。
...
将二维空间的正方形各边一分为a,就得到b=a2个自相似正方形。
因此有公式:
a2=b (2)
...
由此可推得将整数维n维空间中的各边相等的形体一分为a,就得b=an个 彼此之间具有自相似的各边相等的形体。
就有一般公式:
an=b (3)
但是,一切整数维空间中的分形分割都具有如下特征:将整数维空间中的各边相等的形体(包括一维空间的线段)一分为a,就得b=aD个 彼此之间具有自相似的形体,这其中,一般而言D不是自然数。
因此,
aD=b (4)
D=log(b)/log(a) (5)
这其中log其实可以为以任何正实数为底的对数。但就习惯上而言,log是指自然对数。
D就是大名鼎鼎的分形维数最简单最直接的定义。
(三) 将分形积分打回原形
一切整数维空间中有效的积分求和方法都适用于对应于每次迭代的分形面积和分形曲线长度等分形测度的计算。这是因为:整数维空间中的分形,就其实体而言,无分形非分形的缘故。这正好比你照镜子,镜中场景的维数,看起来绝对不同于镜面的维数,而一切镜中场景,其实在无他,镜面而已!哪里有什么不同于镜面的维数??? 虚幻啊!分形分数维!!!
(四)分形测度的真正新问题
分形面积和分形曲线长度等分形测度随最小值为1的自然数自变量增量---叠代次数而变化。自变量增量是最小值为1的不能无限逼近零的自然数,才是分形测度的真正新问题。不过用差分代替导数,用迭代公式结合整数维空间的一切有效的积分求和方法,就可以彻底解决分形测度的真正新问题。
(五)现代泛系量子微积分的一些初步探索
5.1 Koch曲线的面积
假设n是第n次迭代的序号,n>=0。L是初始线段长度。Sn是第n次迭代Koch曲线的面积。bn是第n次迭代所产生的相似线段条数,Arean是第n次迭代的基本附加图形的面积,Ln是第n次迭代基本附加图形的边长。则有:
当n=0,
S0=0
Area0=0
L0=0
当n=1,
S1=S0+b0Area1
Area1=sqrt(3)/4(L1)2
L1=L/3
b0=40=1
当n=2,
S2=S1+b1Area2
Area2=sqrt(3)/4(L2)2
L2=L/(32)
b1=4
当n=3
S3=S2+b2Area3
Area3=sqrt(3)/4(L3)2
L3=L/(33)
b2=16=42
...
因此有一般公式:
Sn=Sn-1+bn-1Arean
Arean=sqrt(3)/4(Ln)2
Ln=L/(3n)
bn-1=4n-1
5.2 Koch曲线的面积S随迭代次数n变化的详细情况
5.3 Koch曲线面积S的单位迭代变化率dS(n)随迭代次数n详细情况
Koch曲线面积S的单位迭代变化率是差分dS(n):
dS(n)=Sn-Sn-1
dS(n)=bn-1Arean
这其中,
Arean=sqrt(3)/4(Ln)2
Ln=L/(3n)
bn-1=4n-1
dS(n)随迭代次数n详细情况如下图所示:
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-30 13:45
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社