冯向军的科学研究博客分享 http://blog.sciencenet.cn/u/冯向军 在本博客中专门从事以统计力学为核心的理论物理研究。

博文

用发生概率和Tsallis广义熵同时最大原理推导Tsallis分布

已有 2073 次阅读 2017-8-22 06:44 |个人分类:决定性概率论|系统分类:论文交流| Tsallis分布

用发生概率和Tsallis广义熵同时最大原理

推导Tsallis分布

美国归侨冯向军博士,2017年8月22日写于美丽家乡


当你亲手推导Tsallis 分布【1】,你才会晓得所谓Tsallis 分布是指如下所示的非标准非负1次幂律分布:

pi = a(1 -(1-q1)λxi)1/(1-q1),i = 1,2,...,n。(1-1)

这其中,q1 = 2 - q。

pi = a(1 -(q - 1)λxi)1/(q - 1),i = 1,2,...,n。(1-2)

当q -> 1 或 q1 -> 1,pi ->或还原成负指数分布aexp(-λxi),i = 1,2,...,n。

 对于平衡态的Tsallis分布pi=f(xi),i=1,2,...,n,同时存在自然约束条件自洽约束条件和系统约束条件:

p1 + p2 +...+ pn = 1    (1-3)(自然约束条件)

p1/f(x1) + p2/f(x2) + ...+ pn/f(xn) = 常数 = n    (1-4)(自洽约束条件)

p1x1 + p2x2 +...+ pnxn = 常量    (1-5)(系统约束条件)

因为:

log(P) + S = log(p1) + log(p2) +...+ log(pn) +

+ 1/(q-1)(1 - p1q -p2q -...- pnq )(目标函数)

可构造拉格朗日算子

L = log(p1) + log(p2) +...+ log(pn) +

+  1/(q-1)(1 - p1q -p2q -...- pnq ) +

+  C1(p1 + p2 +...+ pn - 1)

+  C2(p1/f(x1) + p2/f(x2) +...+ pn/f(xn) - C3)

+ C4(p1x1 + p2x2 +...+ pnxn - C5)

对于拉格朗日算子L求一阶偏导数dL/dpi(i=1,2,...,n)并令之为零。有:

dL/dpi =  1 /pi -q/(q-1)piq-1 + C1  + C2/f(xi) + C4xi= 0,

i = 1,2,...,n。

C2 = -1时,有:

pi = f(xi) = (C1(q-1)/q)1/(q-1)(1 + C4/C1xi)1/(q-1)

命:a = (C1(q-1)/q)1/(q-1)C4/C1 = -(q - 1)λ,有

pi = f(xi) = a(1 -(q - 1)λxi)1/(q - 1) = a(1 -(1-q1)λxi)1/(1-q1)    (1-6)

因为q < 1时,1/(q - 1) < 0, 又因为当q > 0时拉格朗日算子L的二阶偏导数矩阵为一主对角线上元素恒负而其余元素全为零的负定对称矩阵。因此,当 0 < q < 1时,令拉格朗日算子L一阶偏导数为零的上述服从式(1-6)的Tsallis分布pi=f(xi)也必定是令拉格朗日算子L或约束条件下的目标函数发生概率的对数 + Tsallis广义熵取得最大值或极大值的概率分布。这种Tsallis分布pi=f(xi)符合发生概率和Tsallis广义同时最大原理

参考文献

【1】Wikipedia,Tsallis distribution,https://en.wikipedia.org/wiki/Tsallis_distribution






https://blog.sciencenet.cn/blog-1968-1072164.html

上一篇:《关于决定性事件的概率论》的序章
下一篇:大自然的宠儿幂律的重要特性:因果相对变化的相似性或不变弹性
收藏 IP: 113.222.189.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 09:14

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部