|
安全信息学:信息时代大有可为和永恒的安全科学新领域
王秉|文
(1.中南大学资源与安全工程学院,长沙:410083;2.中南大学安全理论创新与促进研究中心,长沙:410083)
本人博士期间,一直从事安全信息学基础理论研究。最近,发表了一篇题为“Safety informatics as a new, promising and sustainable area of safety science in the information age”的英文文章,算是将“Safety informatics(安全信息学)”这一学术新概念和新学科真正推向了国际。这篇文章是国际上首篇系统介绍安全信息学的研究论文,内容非常丰富,可带你了解安全信息学的来龙去脉和全貌。通过阅读这篇文章,你就会做到对安全信息学这门新学科心中有数。这里,扼要介绍这篇文章。
一、文章来源
Bing Wang, Chao Wu. Safety informatics as a new, promising and sustainable area of safety science in the information age [J]. Journal of Cleaner Production, Available online 23 December 2019, DOI: 119852. 10.1016/j.jclepro.2019.119852
文章链接 Safety informatics as a new, promising and sustainable area of safety science in the information age
二、期刊信息
Journal of Cleaner Production:SCI收录期刊,JCR一区,中科院一区
三、文章要点
1)安全信息学是信息时代大有可为的一个安全科学新领域。
2)分析了安全信息学的发展过程。
3)回顾了现有的安全信息学研究。
四、文章摘要
安全是当代人类健康、损失预防、环境保护、可持续性和清洁生产相关讨论中的一个中心维度和话题。在信息时代,特别是大数据时代,安全信息是不可或缺的安全策略,安全信息学已成为安全科学领域的一个重要研究方向和热点问题。近年来,安全信息学作为安全科学的一个新领域,受到了越来越多的关注,并随着对该学科的不断研究而得到了长足发展。本文的3个主要研究目的是:1)分析安全信息学的历史发展过程;2)回顾安全信息学的研究进展;3)回顾安全信息学领域的研究局限并提出未来的发展方向。首先,将安全信息学的发展过程化分为4个典型阶段,即萌芽阶段(1940年至1980年)、初兴阶段(1980年至1990年)、形成阶段(1990年至2010年)与深化发展阶段(2010年至今,乃至未来)。然其次,从7方面(即安全信息学学科建设、理论安全信息模型、基于安全信息的事故致因理论、基于安全信息的安全管理、安全大数据、安全情报与安全信息技术)出发,对安全信息学研究进行综述。最后,讨论安全信息学研究的局限性和未来发展方向。安全信息学的未来研究和发展重点是研究支撑安全4.0(计算安全科学)与智慧安全(包括精准安全)的理论、方法与技术。
五、文章关键词
安全科学;信息科学;安全信息;安全信息学;安全4.0
六、文章主要图表
Fig. 1. Development process of safety informatics.
Fig. 2. Development process of safety science.
Fig. 3. The main research fields of safety informatics.
Fig. 4. SI-SB (Safety Information-Safety Behavior) system safety model (adopted from Wang and Wu)
Table 1.
List and summary of representative research of the discipline construction of safety informatics.
Representative theoretical safety information models.
Table 3.
Accident causation models from a safety information perspective.
Model type | No. | References | Year | Model | Brief explanation |
Individual level | 1 | 1969 | Surry model | The error in human information processing can cause dangers. | |
2 | Cui (1995) | 1970 | Hale model | An accident occurs when humans do not respond appropriately to the actual situation of the event (namely, safety information). | |
3 | Qin and Peng (2005) | 1972 | Wigglesworth model | Various information constantly acts on people’s senses, stimulating them. If people react appropriately to the stimulus, an accident will not occur. On the contrary, if people react to the stimulus incorrectly or improperly, risks may occur, which may cause accidents. | |
4 | 1974 | Lawrence model | Human error is the cause of accidents in gold mining. The most dominant of human errors are failures to perceive warnings (namely, warning information) of danger. | ||
5 | Qin and Peng (2005) | 1978 | Anderson model | Based on the extension and amendment of the Surry model, the Anderson model was proposed. It is similar to the Surry model. | |
6 | Rasmussen (1987), and Katsakiori et al. (2009) | 1987 | SRK framework | SRK (Skill-, Rule-, and Knowledge-based behavior) framework distinguishes between three different levels of human cognitive control of the environment. | |
7 | Hale and Glendon (1987), as well as Lacroix and Dejoy (1989) | 1987 | Hale and Glendon model | Hale and Glendon’s model is concerned with safety perceptions and decisions, and is based on the attribution theory which focuses on how people process information in determining the causality of events. | |
8 | Hollnagel (1998) and Katsakiori et al. (2009) | 1998 | CREAM | CREAM (Cognitive Reliability and Error Analysis Method) describes the full context in which errors and accidents occur. | |
Organizational(systemic) level | 9 | Leveson (2004) | 2004 | STAMP model | STAMP (System-Theoretic Accident Model and Process) regards systems as interrelated components that are kept in a state of dynamic equilibrium by feedback loops of information and control. |
10 | Zhao and Zhou (2012) | 2012 | Accident causation model based on safety information missing | Safety information is an informational expression of various factors of accidents. The lack of safety information is the main potential cause of accidents. | |
11 | Li et al. (2017) | 2017 | Multilevel safety information asymmetry model | Information asymmetry is the main cause of accidents in the organization. | |
12 | Wang and Wu (2018e) | 2018 | FDA accident model | FDA (Forecast-Decision-Action) accident model points out that, in the absence of safety spoofing, the lack of safety information is the main cause of failures in safety forecast, safety decision-making, and safety action. | |
13 | 2019 | Accident model based on information flow | The role of information flow in accident causation is profound. The breakdown of information flow (such as the failure of information acquisition) can potentially cause an accident. |
Table 4.
List of typical applications of safety big data in safety management.
No. | Area | Main researches |
1 | Safety decision-making | • Huang et al. (2018b) developed a conceptual framework for big data-driven safety decision-making, and analyzed the influencing factors of safety decision-making based on big data, and • To use data-driven safety decision-making to realize smart safety management in the era of big data, Wang et al. (2019c) stated the definition, benefits, theoretical foundations, fundamental elements, and influencing factors of data-driven safety decision-making. |
2 | Safety monitoring | • Shi and Abdel-Aty (2015) discussed the application of big data in urban highway safety monitoring, and • Bychkov et al. (2016) discussed the application of big data in ground-based safety monitoring. |
3 | Accident investigation and analysis | • Huang et al. (2017b) proposed a new paradigm for accident investigation and analysis in the era of big data, and • Huang and Zhou (2019) developed a mine accident prediction and analysis approach based on multimedia big data. |
4 | Safety risk prevention and control | • Walker and Strathie (2016) suggested that the big data and ergonomics methods is a new paradigm for tackling strategic transport safety risks, and • Cao et al. (2017) and Wang et al. (2018) discussed safety risk early-warning and governance based on big data. |
5 | Emergency management | • Ragini et al. (2018) highlighted that the real-time categorization and classification of social media big data can ensure effective disaster response and recovery, • Guo and Liu (2016) conducted a study on emergency data quality governance in the era of big data, and • Many other studies (e.g., Pang, 2015; Ma and Mao, 2015; Wu, 2017) explored the application of big data in emergency management. |
List of typical safety information technologies.
No. | Area | Examples of main safety information technologies |
1 | Safety monitoring | GIS, GPS, sensor technology, database technology, network technology, communication technology, etc. |
2 | Accident (disaster) prevention and control | Computer simulation technology, database technology, virtual reality technology, image measurement technology, big data technology, etc. |
3 | Safety risk management | Machine learning technology, big data technology, assisted decision-making support system, artificial neural network technology, etc. |
4 | Safety education and training | Multimedia technology, computer network technology, animation technology, virtual reality technology, visualization technology, etc. |
5 | Emergency management | Internet of things technology, network technology, assisted decision-making support system, visualization technology, database technology, artificial intelligence technology, etc. |
附:课题组部分系列安全信息学研究成果
[1] 王秉,吴超著.安全信息学[M]. 北京:机械工业出版社,2020.(待版)
[2] Bing Wang, Chao Wu. Demystifying safety-related intelligence in safety management: Some key questions answered from a theoretical perspective[J]. Safety Science, 2019, 120: 932–940.
[3] Bing Wang, Chao Wu, Lang Huang. Data literacy for safety professionals in safety management: A theoretical perspective on basic questions and answers[J]. Safety Science, 2019, 117: 15–22.
[4] Bing Wang, Chao Wu, Lang Huang, Liangguo Kang. Using data-driven safety decision-making to realize smart safety management in the era of big data: A theoretical perspective on basic questions and their answers[J]. Journal of Cleaner Production, 2019, 210: 1595-1604.
[5] Bing Wang, Chao Wu, Bo Shi, Lang Huang. Evidence-based safety (EBS) management: A new approach to teaching the practice of safety management (SM) [J]. Journal of Safety Research, 2017, 63(12):21-28.
[6] Lei Yu, Wu Chao, Feng Yanxi, Wang Bing. Optimization of multi-level safety information cognition (SIC): A new approach to reducing the systematic safety risk[J]. Reliability Engineering and System Safety, 2019, 190: 106497.
[7] Lang Huang, Chao Wu, Bing Wang. Challenges, opportunities and paradigm of applying big data to production safety management: From a theoretical perspective[J]. Journal of Cleaner Production, 2019, 231:592-599.
[8] Lang Huang, Chao Wu, Bing Wang, Qiumei Ouyang. Big-data-driven safety decision-making: A conceptual framework and its influencing factors[J]. Safety Science, 2018, 109: 46-56.
[9] Chao Wu, Lang Huang. A new accident causation model based on information flow and its application in Tianjin Port fire and explosion accident[J]. Reliability Engineering and System Safety, 2019, 182: 73–85.
[10] Lang Huang, Chao Wu, Bing Wang, Qiumei Ouyang. A new paradigm for accident investigation and analysis in the era of big data[J]. Process Safety Progress, 2018, 37(1): 42-48.
[11] Lang Huang, Chao Wu, Bing Wang, Lin Huanhuan. An unsafe behavior formation mechanism based on risk perception [J]. Hum. Factors Man. 2019,29:109–117.
[12] Qiumei Ouyang, Chao Wu, Lang Huang. Methodologies, principles and prospects of applying big data in safety science research[J]. Safety Science, 2018, 101: 60-71.
[13] Tongyuan Luo, Chao Wu. Safety information cognition: A new methodology of safety science in urgent need to be established[J]. Journal of Cleaner Production, 2019, 209: 1182-1194.
[14] 王秉,吴超,孙胜.面向安全管理的安全信息基本问题思辨——内涵、性质及功能[J].情报杂志,2019,38(05):22-28.
[15] 王秉,吴超.大安全观指导下的安全情报学若干基本问题思辨[J].情报杂志,2019,38(03):7-14.
[16] 王秉,吴超.安全情报概念的由来、演进趋势及涵义——来自安全科学学理角度的思辨[J].图书情报工作,2019,63(03):45-53.
[17] 王秉,吴超.情报主导的安全管理(ILSM):依据、涵义及模型[J].情报理论与实践,2019,42(06):56-61.
[18] 王秉,吴超.一种安全情报的获取与分析方法:R-M方法[J].情报杂志,2019,38(01):61-66.
[19] 王秉,吴超.安全情报系统的理论框架研究[J].现代情报,2019,39(01):13-19.
[20] 王秉,吴超.安全情报在安全管理中的作用机理及价值分析[J].情报理论与实践,2019,42(02):38-43.
[21] 王秉,吴超,黄浪.一种基于安全信息的安全行为干预新模型:S-IKPB模型[J].情报杂志,2018,37(12):140-146.
[22] 王秉,吴超.安全情报学建设的背景与基础分析[J].情报杂志,2018,37(10):28-36.
[23] 王秉,吴超.安全管理信息系统国际研究进展——基于Web of Science数据库的典型文献分析[J].情报杂志,2018,37(11):131-136.
[24] 王秉,吴超.一种基于证据与风险的系统安全管理新方法:ERBS法[J].情报杂志,2018,37(09):141-147.
[25] 王秉,吴超.科学层面的安全管理信息化的三个关键问题思辨——基本内涵、理论动因及焦点转变[J].情报杂志,2018,37(08):114-120.
[26] 王秉,吴超.安全信息视域下FDA事故致因模型的构造与演绎[J].情报杂志,2018,37(04):120-127+146.
[27] 王秉,吴超.安全信息供给:解决安全信息缺失的关键[J].情报杂志,2018,37(05):146-153.
[28] 王秉,吴超.循证安全管理学:信息时代势在必建的安全管理学新分支[J].情报杂志,2018,37(03):106-115.
[29] 王秉,吴超.安全信息素养:图情与安全科学交叉领域的一个重要概念[J].情报理论与实践,2018,41(07):35-41.
[30] 王秉,吴超.安全信息学论纲[J].情报杂志,2018,37(02):88-96.
[31] 王秉,吴超.安全信息行为研究论纲:基本概念、元模型及研究要旨、范式与框架[J].情报理论与实践,2018,41(01):43-49.
[32] 王秉,吴超.安全信息—安全行为(SI—SB)系统安全模型的构造与演绎[J].情报杂志,2017,36(11):41-49+98.
[33] 王秉,吴超.安全信息视阈下的系统安全学研究论纲[J].情报杂志,2017,36(10):48-55+35.
[34] 王秉,吴超,黄浪.基于安全信息处理与事件链原理的系统安全行为模型[J].情报杂志,2017,36(09):119-126.
[35] 王秉,刘华森,吴超.情报主导的突发事件防控研究[J/OL].信息资源管理学报:1-8[2019-12-27].http://kns.cnki.net/kcms/detail/42.1812.G2.20191217.1412.006.html.
[36] 王秉,吴超.情报主导的城市安全管理研究[J/OL].情报理论与实践:1-13[2019-12-27].http://kns.cnki.net/kcms/detail/11.1762.G3.20191029.1514.002.html.
[37] 王秉,吴超,黄浪,彭忠益.大数据环境下情报主导的国家矿产资源安全管理:范式与平台[J].情报杂志,2019,38(10):111-118.
[38] 光夏磊,吴超,王秉.安全信息思维下的PAR事故致因模型构建及其实证[J/OL].情报杂志:1-9[2019-12-27].http://kns.cnki.net/kcms/detail/61.1167.G3.20191016.1716.006.html.
[39] 雷雨,吴超.安全数据素养的作用机制及其促进研究[J].情报杂志,2019,38(09):192-197+207.
[40] 冯伟,陈沅江,吴超,成霜怡.基于安全信息认知的事故致因模式研究[J].情报杂志,2019,38(07):160-165.
[41] 罗通元,吴超.事故中的安全信息耦合研究[J].中国安全科学学报,2019,29(03):155-160.
[42] 章雅蕾,吴超,王秉.安全情报素养:总体国家安全观背景下安全人员的必备素养[J].情报杂志,2019,38(03):33-38+113.
[43] 吴超,华佳敏.安全信息不对称下安全规制机制研究[J].情报杂志,2019,38(02):110-115.
[44] 华佳敏,吴超.安全信息经济学的学科构建研究[J].科技管理研究,2018,38(21):264-269.
[45] 康良国,吴超,黄锐.矿山安全信息认知及传播机理研究[J].科技管理研究,2018,38(17):182-187.
[46] 雷雨,吴超,冯宴熙.通用原理视域下的安全信噪生命周期理论研究[J].情报杂志,2018,37(11):137-142.
[47] 黄浪,吴超,王秉.大数据视阈下的系统安全理论建模范式变革[J].系统工程理论与实践,2018,38(07):1877-1887.
[48] 罗通元,吴超.伤害事故安全信息认知建模与机理研究[J].中国安全生产科学技术,2018,14(06):154-159.
[49] 雷雨,吴超,王秉.人对声信号的安全认知模型构建及其应用[J].中国安全生产科学技术,2018,14(06):27-32.
[50] 罗通元,吴超.安全信息学原理的体系构建[J].科技导报,2018,36(12):76-85.
[51] 闪顺章,吴超,王从陆,王秉.大数据视域下循证安全管理模式研究[J].中国安全科学学报,2018,28(06):7-12.
[52] 黄浪,吴超,王秉.基于信息认知的个人行为安全机理及其影响因素[J].情报杂志,2018,37(08):121-127.
[53] 雷雨,吴超,闪顺章,王秉.安全信息感知的不确定性分析与建模[J].情报杂志,2018,37(05):154-160.
[54] 雷雨,吴超,闪顺章.多级安全信息认知模式分析与优化[J].情报杂志,2018,37(04):135-140+165.
[55] 罗通元,吴超.安全信息学的基本问题[J].科技导报,2018,36(06):65-76.
[56] 黄浪,吴超,王秉.个体安全信息力的概念模型及其作用机制[J].中国安全科学学报,2017,27(11):7-12.
[57] 罗通元,吴超.SIC思维下的事故致因模型构建与实证分析[J].中国安全科学学报,2017,27(10):1-6.
[58] 李思贤,吴超,王秉.多级安全信息不对称所致事故模式研究[J].中国安全科学学报,2017,27(07):18-23.
[59] 吴超.安全信息认知通用模型构建及其启示[J].中国安全生产科学技术,2017,13(03):5-11.
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-25 02:32
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社