Wildbull的个人博客分享 http://blog.sciencenet.cn/u/Wildbull

博文

划时代的生命三域说:真理 or 谎言? 精选

已有 22224 次阅读 2014-7-9 15:32 |系统分类:观点评述| 进化树, 16s, 生命三域说, 时钟分子, rRNA

逻辑上来说,如果能找到一种生物体内普遍存在的分子,而且这种分子的变化十分缓慢且遵循一种时序性的变化规则(类似时钟),就有可能用于分析所有生物类群的进化关系,即描绘出系统进化之树。在过去的半个世纪,不计其数的生命科学家开始追寻这一神圣的幻影,而正是一个称之为三域说的“划时代”理论拉开了这曲大戏的序幕。人们视其为救命稻草,因为对微小而结构简单的原核生物来说,厘清进化关系无比困难,由于难以找到在形态上可以辨识的化石记录。

 

一、“三域”说横空出世

1.“神奇”的时钟分子

Zuckerkandland Pauling(1962)通过比较不同生物世系的同一血红蛋白(hemoglobin)分子的氨基酸排列顺序发现,氨基酸随着时间的推移大致以一定的比例相互置换着,即氨基酸在单位时间以同样的速度进行置换。他们将这样的观察一般化之后,提出了所谓的分子钟(Molecular clock)假说,即基因或蛋白质的序列随时间的推移以相对恒定的速率变化,而且同一基因或蛋白的变化速率在不同世系的有机体中大约一致。

1968年,日本学者木村资生提出了所谓的分子演化中性学说(neutral theory of molecular evolution),该学说有两个要点,其一,大部分突变都是中性的(即对生物的演化适应性并无实际作用,它们既不会被自然选择促进,也不会被抑制),它们要么逐步扩散到整个种群,要么通过“基因漂移”的随机过程而消失,但大部分中性突变被固定下来了;其二,每一种大分子在不同生物中的变化速度都是一样的(Kimura 1968)。可以认为,中性学说是分子钟假说的一种延伸。

依笔者之见,分子钟或中性理论的倡导者与达尔文一样都关注随机变异(当然前者在分子水平,后者在表型水平),只不过前者对不受自然选择作用的那些变异感兴趣,而后者则关注受到“自然”选择作用的那些变异;可是,任何水平的变异既具有随机性,又不可能完全随机,而分子钟或中性理论的信奉者就是要找出既普遍存在又逃脱了达尔文选择的神奇分子,或者说一个普适性存在且完全不受达尔文选择影响的分子就是他们梦幻中的时钟分子。当然,这样的分子还必须具有足够的复杂性,以便容纳相当大的时序性变异,而过于简单的分子是不可能作为这种时钟分子的。人们能找到满足如此苛刻条件的时钟分子吗?

2.“美丽”的进化之树

20世纪七十年代,美国著名的微生物学家Woese(1928年-2012年)声称找到了一个可以作为时钟的神奇分子—16S rRNA(在真核生物中为18S rRNA)。Woese和Fox(1977)通过距离矩阵法,计算出不同序列之间的进化距离(还揭示出一些特征序列),最后构建出一般的系统发育树,勾画出了现代生物类群的相对进化路线与位置(图1)。在树的基部,古细菌与真核生物分化自一个共同的祖先(未知),而古细菌—真核生物与细菌拥有一个共同祖先,它是系统树最基部的一个节点,但谁是共同祖先却是个未解之谜。


图1 通过核糖体小亚基的rRNA序列构建的系统发育树,包括三个域—细菌、古细菌和真核生物,超嗜热菌中硫代谢的类型予以了标识(引自Noll & Childers 2000)

 

在原核生物的分类中,由于结构过于简单,无法像动植物那样建立基于形态学的分类体系,因此,传统上也主要以生化特征作为鉴别的重要依据。由于核糖体RNA的结构具有较好的保守性,因此在原核生物的大类群的区分方面备受重视。这就是为何Woese的方法得到极大的青睐(不光在微生物领域,而且也在真核生物领域)并一直沿用至今的缘由。但遗憾的是,在解决关于生命起源的问题上,它好像派不上什么用场,因为在基部类群的问题上,没有任何其它可信的时序性证据能够予以辅佐。

3.“惊人”的三域理论

Woese和Fox(1977)比较了大肠杆菌、万氏甲烷菌和酿酒酵母的核糖体小亚基中的rRNA的结构(如图11-2所示),认为可以将古菌看作从细菌到真核的酵母菌的一种过渡类型。因此,他们提出了将古菌从细菌中分离出来以作为一个与细菌和真核生物并列的一个独立的域,这是一个惊人之举!之后,很多人也就习惯这样去想,古细菌在进化上是连接细菌与真核生物的桥梁。

像域这样的大的分类概念似乎也没有一个客观的判断标准,而更像是一种主观的界定、规定或划分。不停地推出一些新的生命类型或体系也是分类家的一种普遍嗜好!譬如,从图2的结构比较,如何才能有一种不同域的感受呢?域到底意味着什么呢?

 


图2 区分生命为三个域的核糖体小亚基中的rRNA的关键结构差异(引自Woese 1987)

 

二、为古菌域“站台”

除了核糖体小亚基中的rRNA在结构上呈现出一定的过渡性(细菌→古菌→真核生物),是否还有其它证据呢?或者说,古菌是怎样特殊的一个生物类群而值得将它们作为一个不同的域呢?

古菌最早发现于一些极端环境,如火山温泉(图3A为黄石国家公园的大棱镜温泉),它也存在于深海热液喷口(图3B)。现已知道,古菌多是一些嗜极种类,常常生存于一些极端环境,如>100的温泉、盐湖、强酸或强碱性水体或动物的消化道之中。譬如,一种古生菌—硫化叶菌Sulfolobus)是化能营养菌,它既嗜酸(最适pH值为2~3),也嗜热(最适生长温度为70~75℃)。但是,古菌也广泛栖息于土壤、海洋和沼泽等十分多样的生境之中。需要指出的是,能够在类似极端环境中生存的也不仅仅只有古菌。

古菌不仅仅限于极端环境,甚至同一类古菌在生存环境上也有很大的可塑性。譬如隶属于宽广古生菌门的产甲烷菌(Methanogenus)包括4目12科31属,它们为专性厌氧菌,但具有宽广的温度适应范围:低温菌为2025℃,中温菌为3045℃,高温菌为4575℃。

 


图3地面热泉(A)和深海热液喷口或“黑烟囱”(B)(来源:A-维基百科,B-The Daily Galaxy

 

表1就是对细菌、古菌和真核生物在形态、遗传与生理特征的比较。总的来看,古菌在能量产生与新陈代谢方面与细菌有许多相同之处,而其复制、转录和翻译则更接近真核生物。

古菌的能量来源从有机物糖类到氨直到氢气,但是没有一种古菌能像蓝细菌和高等植物那样能进行固定CO2的光合作用,虽然少数古菌(极端嗜盐古菌Halobacterium salinarum)能利用光能合成ATP(因此,也能称得上是一种光合作用),但它依靠一种特殊的色素蛋白复合体分子—细菌视紫质来创造膜内外的H+梯度,使ATP合成酶得以运转。但是这也不是古菌的专利,也被真细菌所用。因此,要说有什么不同,就是古菌不能靠叶绿素或细菌叶绿素来进行光合作用。但问题是在细菌中也存在类似的现象。

之前,在古菌中从未报道过存在细菌叶绿素a的生物合成,因为它们并不进行依赖与细菌叶绿素的光合作用。但是,最近Meng等(2009)在古菌中发现了一种细菌叶绿素a合成基因(bacteriochlorophyll a synthase gene)。可问题是,这样的基因到底是本来就有的呢还是从其它光合细菌通过水平转移(horizontal transfer)而来的呢?如果相信前者,就只好假定古菌本来是能够进行利用叶绿素或细菌叶绿素的光合作用的,到后来逐渐退化,最终就只在少数种类中还残留了个别不发挥作用的细菌叶绿素a基因。但实际上到底是何种途径也无法确定。

 

表1 三域(细菌、古菌和真核生物)特征的比较

特征

细菌
 Bacteria

古菌
 Archaea

真核生物
 Eukarya

形态和遗传

 

 

 

原核细胞结构

共价闭合环状DNA

组蛋白

包围的

细胞壁

胞壁酸

不含胞壁酸

不含胞壁酸

膜脂质

键连接

键连接

酯键连接

核糖体大小

70S

70S

80S

起始tRNA

甲酰蛋氨酸

蛋氨酸

蛋氨酸

多数基因中有内含子

操纵子

mRNA5'端帽3'A

无(部份有A,但作用与真核不同)

质粒

稀少

核糖体对白喉毒素敏感

RNA聚合酶

1个(4亚基

几个(各8~14亚基)

3个(各12~14亚基)

需要转录因子

启动子结构

-10-35序列(Pribnow

TATA

TATA

氯霉素链霉素卡那霉素敏感

生理

 

 

 

产甲烷作用

还原SSO42-H2S,或Fe3+Fe2+

硝化

脱氮

固氮

基于叶绿素光合作用

有(在叶绿体中)

基于视紫红质的能量代谢

化能营养Fe, S, H2

气泡

-β-羟基脂肪酸作为碳储存颗粒

80以上生长

100以上生长

(引自Madigan and Martinko 2006)

 

从表1不难看出,与真核生物相比,原核的细菌和古菌在与能量代谢和碳代谢相关的生理功能上要丰富多样得多,或者换句话说,在基础代谢方面,细菌和古菌表现出了惊人的可塑性,而真核植物看似只选择了基于叶绿素的光合作用这一条进化之路,虽然它是如此的宽广与自由!

古菌在膜脂的结构上与细菌和真核生物也有一定差异。古菌膜脂由分枝碳氢链和D型磷酸甘油通过醚键相连而成,而在细菌和真核生物中,则是由不分枝脂肪酸和L型磷酸甘油通过脂键连接而成。细菌和真核生物的细胞膜由双层类脂构成,但一些嗜热古菌的双层类脂出现了共价交联,形成了结实的疏水层(变成了一种两端亲水的单脂层),这种结构增强了膜的机械强度和耐热性。

此外,嗜热古菌的双链DNA结构也呈现出较好的稳定性,譬如,大部分嗜热古菌的生长上限温度和DNA中G+C含量之间存在正相关关系。在DNA双链中,G和C是以三个氢键相连,而T和A只以两个氢键相连,而氢键的多少体现连接的能量,即氢键越多,解链能量需要越多。因此,古菌DNA中的G+C含量越高,解链温度也越高,对高温和碱的耐受性也越强。

但是,需要指出的是,一些嗜热古菌在细胞膜结构和核酸成分上的这种热适应性与系统发生真的有必然的关系吗?这能反映时序性的物种演化过程吗?还有其它证据来佐证吗?

 

三、醉人的幻想?

1.吻合之梦—在反证中淬灭

基于核糖体小亚基中的rRNA序列构建的一般系统树果真如此完美吗?绝对不是!一些学者指出了可能存在的一些问题。首先,进化事件发生的准确时间是不可能从进化树来获知的,虽然很多人试图这样做,其次,序列的变化也很难与时间准确相关,因为不同世系的进化钟也不是恒定的;还有,仅仅依据一种分子的序列,也无法从进化树中找出现代世系的共同祖先(Pace 1997)。

不同类群序列的比对如何能够决定它们进化时间的先后呢?当然,如果有一些其它证据(如化石)的帮助还是有可能的。但是,对于生命起源早期出现的一些无法留下化石痕迹的微小的单细胞原核生物来说,基于这种序列的比对是根本无法推测出进化的时间先后的。谁有证据能确认产液菌是细菌中最古老的呢?谁能说化能营养就一定比光能营养起源早呢?从序列本身,再怎么比较,也不会产生时间先后的概念。对这个神化的rRNA分子来说,是什么引起了它的缓慢变化的呢?仅仅是缘于时间的随机变化吗?难道生存环境不可以引起它的变化吗?如果既有时间的影响又有环境的影响,那如何才能将它们分离开来呢?

谁能保证一种分子的变异能建立起所有的进化关系呢?以细胞色素C为例吧,这是一类对“分子钟”概念的提出起到过关键作用的分子,它既复杂、又广泛分布(作为电子载体存在于几乎所有的生物类群之中)且变异也十分缓慢,看上去十分符合理想时钟分子的条件。但是,雅荷雅(2003)指出,一些研究表明,这种分子在生物中表现出难以置信的变异:两种不同爬虫间的差异,要比鸟跟鱼或鱼跟哺乳动物的大,同一鸟类分子间的差异,比这类鸟与哺乳动物的还要大,此外,看上去相似的细菌,在分子中的差异,要比哺乳动物、两栖动物或昆虫的大。类似的例子应该举不胜数!

最近通过对一种能在接近沸点温度下生长的超嗜热菌(Aquifex aeolicus)的基因组序列测定发现:①如果用FtsY(参与细胞分裂调控的蛋白质)作为分子记时器,该菌与Woese进化树上位于细菌分枝的枯草芽孢杆菌(一种土壤细菌)相近;②如果以一种参与色氨酸合成的酶为准,该菌应属于古菌;③如果选择合成胞苷三磷酸的酶时,则古菌不再形成独立的一群。因此,不同的基因似乎在讲述不同的进化故事,而这不同的故事也似乎与进化的时序性并不那么紧密相关。

Denton(1985)指出,“在分子水平上的每一生物种类是独特、孤立的,并且与任何媒介没有关联。因此,像化石一样,分子没有给长期寻找难懂的中间形式的进化论生物学家以证据……。在分子水平上,任何生物体没有可以比作‘祖先’、‘原始’或‘高级’的亲缘关系……。无疑,如果这些分子证据在一个世纪以前存在的话……器官进化的观念也许根本不会存在”。

再回到16srRNA(或18srRNA),难道它们果真如此神奇吗?笔者认为,如果没有绝对时间的进化矫正,它们充其量只能在有限的范围中提供一种系统发育关系或进化的极为有限的参考,对共同祖先周围的基部类群尤其如此。

2.基因搅局—转移与丢失

生命的系统树还面临一些其它的棘手问题。譬如,不同物种之间的基因水平转移(Horizontal gene transfer)可能使现在的系统树相互交叉(这在结构简单的原核生物中更是问题)。此外,像在一些真核生物(如寄生虫)中发生的基因丢失现象难道就不在原核生物中发生吗?再就是关于真核生物的起源问题,这依然是生命科学的最大谜团之一。但目前至少在一些真核生物细胞器的起源问题上基本达成了共识,即按照内共生学说,线粒体可能起源自好氧的变形菌门细菌,而叶绿体则起源自蓝细菌,这些细胞器有单独的基因组,但一些蛋白(如在叶绿体内)的合成仍然依赖于核基因,这表明了细胞器基因组与核基因组之间存在整合或交换,这其实与基因的水平转移并无本质差别。从根本上说,基因的水平转移、复制、丢失等就是一种谱系痕迹的改写、擦除或毁灭过程。

此外,系统树的准确性似乎还受到体制可塑性的影响。体制可塑性越大的生物类群(简单的原核生物),在系统树中就越有可能是盘根错节的,而体制可塑性越小的生物(复杂的真核生物)在系统树中就越有可能是泾渭分明的。因此对变异速度快的原核生物来说,现存的系统树可能根本反应不了什么真正的演化关系,说不定充其量只是现存原核生物的基于分子结构相似性的一种归类而已。

3.自乱方寸—乏力的辩解

20世纪70年代,Woese利用核糖体小亚基的rRNA序列构建了现代生命的系统发育树,但也没能解决共同祖先的起源问题,随着微生物基因组数据的日益增多,人们对基因水平转移对谱系痕迹的可能影响日益担忧,也开始怀疑用这样的分子序列构建的系统发育树是否真正可靠。

为此,Woese(2002)提出了一种新的假说,认为生命伊始之际,至少存在三种结构简单而松散的细胞组织形式,它们在同一个环境中生存与进化,通过基因交流,共享进化发明,从这三种独立的原始生命形式演化出了细菌、古菌和真核细胞(这是他亲自划定的三个域)。他认为,这三种生命形式是独立进化而来的,但进行了基因交流,现代细胞的组织形式代表了一种嵌合关系(某些情况下三种细胞类型的两者高度相似,而另一些情况下又差异很大),而这正是它们以截然不同的组织形式开始的证据,在随后的进化过程中,它们进行了频繁的遗传“交流”与“互换”,终于合而为一。

Woese说,“随着细胞的结构越来越趋于错综复杂,终于到达一个完整细胞结构出现的关键点”,而他称这个关键点为“达尔文开端”,即自这一时间开始有了系谱的线索,也就是物种起源的开端,在此之后,所有特定细胞类型的组织结构在进化过程中只有微小的变化发生。

Woese说,“如果我们禁锢于达尔文的思维模式,就不能指望对细胞进化作出真正正确的解释……生物学超越达尔文共同起源假说的时代已经到来……共同起源学说以及任何共同起源学说的‘变种’都没有抓住要旨,即细胞产生的进化过程的本质-动力学”。他甚至宣称,地球上细胞进化的驱动力来自基因的水平转移,即获得外来细胞的组成成分(包括基因和蛋白质等)来促进自身细胞实体的进化。

   不难看出,为了维护他所创立的三域理论之完美性,Woese真可谓煞费苦心,他极其主观地将根本性的变异定格于三种类型正式确立之前,而将之后所发生的变异规定为对体制的影响微不足道(依据何在呢?)!进一步,他提出来应该否定达尔文的一个共同祖先的理论,而主张有三个祖先同时起源,这既维护了他自己的理论,同时还有伟大的“创新”!

4.轨迹吻合—逻辑何在?

人们期待着能够通过一些广泛分布、足够复杂且相当保守的分子(如细胞色素c、16S rRNA)的变异规律去复原物种进化的轨迹,在这里人们期待一种没有导向性的随机变异,而且彼此间的差异随着时间的流逝会越来越大,就像星体大爆炸后碎片飞得越来越远一样。但是,没有哪一种分子只发生完全随机的变化,而一点都不受到指向性环境趋势的影响的,这是绝对不可能的。如果物质的变异具有累积性并能找到其它可靠的时间参照物(如化石),分子钟或许会派上用场(甚至大用场),这是在复杂的大型动植物那里可见的情形。但是,对简单、微小、多变、缺乏变异累积性且没有其它可靠辅助辨识手段的细菌和古菌来说,任何一种分子钟都只可能是对现存物种按一种特定物质结构进行的归类,就像林奈那时的分类学一样,在这样的情况下,从任何一种分子的动静,都不可能准确感知时间的轨迹本身,因此也就不可能复原准确的演化路线。

生命是一种能量驱动的物质性实体,它以自身的变化去应对生存环境不可预测的永恒变化。任何生命都是由不计其数的有机和无机的分子按一定的原则聚集而成,当然一些有机分子可能变化较快,而另一些则可能变化较慢,人们常常将这种缓慢的变化称之为“保守”。虽然古罗马诗人卢克莱修(1981)说过,“离开了事物的动静,人们就不能感觉到时间本身”,但是,能否用某种动静来准确地把握时间则又是另一回事了。

 

结语

不可能存在任何神奇分子能够厘清系统发育树基部类群之间的进化关系。因此,相信用16S rRNA构建的所谓“三域”说的人只能是掩耳盗铃,无论是过去、现在还是将来,即便是给予膏田沃野,这样的努力也扎不下任何希望的根须,更闻不到醉人的芳泽,而收获的只会是荒芜与悲戚!

被誉为“划时代”的三域说决不是什么真理,不过就是一种幻想。原核与真核才是根本的区分,这不仅仅依赖于一种遗传物质的宏观构象—核的存在与否,更是根植于遗传方式的区分—前者只能进行无性生殖,而后者普遍进行有性生殖。从功能上来说,16S rRNA关乎蛋白质的合成,而DNA则关乎种系的本质特征—繁衍,因此,从进化的历史视角来看,前者似乎更应是环境性响应特征,而后者则更是遗传性特质。因此,古菌和真菌也许就是环境塑造的产物,它们不可能是种系意义(域)上的区分,虽然充其量可以被视为原核家族中的两大类群。

 

主要来源:

谢平. 2014. 生命的起源—进化理论之扬弃与革新.北京:科学出版社(英文:Xie P. 2014. The Aufhebung and Breakthrough of the Theories on the Origin and Evolution of Life. Beijing: Science Press)

对该博文内容引述时,请引用此专著 。 

关联博文:

一个新理论:生命在光系统的演化中扬帆启程!

    (http://blog.sciencenet.cn/home.php?mod=space&uid=1475614&do=blog&id=848053 

进化论——超越达尔文?

    (http://blog.sciencenet.cn/home.php?mod=space&uid=1475614&do=blog&id=838410) 



https://blog.sciencenet.cn/blog-1475614-810348.html

上一篇:动物“性”的演进—荣耀与悲摧
下一篇:审读•覃思——生命是什么?
收藏 IP: 159.226.163.*| 热度|

76 张大文 邓道贵 熊倩 倪乐意 覃剑晖 吴世凯 李威 张骥 刘兵钦 袁桂香 郝乐 余国志 符辉 姜艳 焦飞 张学振 王德华 王有基 杨正瓴 李土荣 袁军法 梁高道 杨洪强 沈宏 李方和 史彭慧 赵丹丹 唐汇娟 黄永义 陈波 柯志新 戴德昌 陈楷翰 赵斌 乔中东 程起群 董明 张珑 金刚 蔡雁 王和云 祝国荣 朱晓刚 陈亮 李万春 李莉 余得昭 sjtzcqn ttqq fishstop0910 gaoshannankai leihh shenlu WANG618 waterfowl luxiaobing12 biofans sgcst lovenzaw farniu wangqinling liux831 capenter rfm2007 s11s yanghua7788 liulanxiang ddsers Lazi711 wanghua4 tangxin liguangyu2001 yyzhao1104 Vetaren11 Xiawulai fangfeng1979

该博文允许实名用户评论 评论 (65 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-11-23 09:51

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部