Hydrogen has been considered the best substitute for fossil fuels in future, as it is clean and renewable. Currently, one of the main obstacles of hydrogen economy is the efficient storage, which should have high gravimetric and volumetric density, fast kinetics. However, no existing materials meet all the industry requirements. The interactions between hydrogen and materials are either too weak in physical adsorption or too strong in chemical adsorption. The rational design of materials for hydrogen storage is crucial to hydrogen economy.A group from Peking University has suggested a novel porous structure, which has large pores as well as exposed transition metal sites composed of tripyrrylmethane molecules decorated with Ti atoms. It has been shown that each Ti can adsorb three H2 molecules with average binding energy of 0.172 eV/H2, which is promising for the adsorption and release of H2 under ambient condition. More details can be found in the article “Tripyrrylmethane based 2D porous structure for hydrogen storage” by Xiao ZHOU (周啸) et al. pp 220-223. [Photo credits: Jian ZHOU (周健), College of Engineering, Peking University]