李旭分享 http://blog.sciencenet.cn/u/lixujeremy 代码与散打爱好者!

博文

Matlab: X is rank deficient

已有 15461 次阅读 2015-8-31 10:24 |个人分类:Matlab|系统分类:科研笔记| regress

Summary

开贴讨论Rank deficient matrix线性回归之过程。示例数据包含在附件中,x is a matrix whose columns represent random variables and whose rows represent observationsy is an n-by-1 vector ofobserved responses

回归方程组可如下表示:

式中:xii=1,2,,10)与b均为m维列向量,求解a1,a2,,a10


Fig. 1显示方程组增广矩阵,左边9×10表示xi,第11列是b

Fig. 1

引用定理:

n个未知数的非齐次线性方程组Ax=b有解的充分必要条件是系数矩阵A的秩(Rank)等于增广矩阵B的秩,且当R(A)=R(B)=n时方程组有惟一解,当R(A)=R(B)=r<n时方程组有无限多个解。[6]P96

Method

解:系数矩阵的秩R(xi)=9,增广矩阵的秩R(xi, b)=9<10

所以方程组a1,a2,,a10有无限多个解。

若在Matlab应用regress函数,此时返回“Warning: X is rankdeficient to within machine precision.”,即是明示方程组系数矩阵是秩缺的。prc.rar

%此时

X=[ones(9,1) x];

[coefs,bint,r,rint,stats]=regress(b, X);

coefs=

0

1.26061943597438

3.23820029692269

-5.86899781062611

0

0.394522181750229

-1.56586683726205

4.19512963015161

-2.15499211579584

-0.256449681084742

1.82364987066155

这一组回归系数是方程组的可能解之一,它使得回归结果的残差最小(regress essentially computes the least error solution such that sum of residuals of Y -X*B has the least amount of error.)。

一般地,方程个数(本例是9个)小于未知数数量(10)是一定不能找到惟一解的。

参考文献[7]是一个非常好的例子,认真体会理解!本例应用regress有一点例外,它的输入矩阵不包含常数项(the intercept term),我曾去信询问@rayryeng,他在回复中指出这是数据提问者要求的(didn't include the intercept term because that is specific to his problem),他当时没有追究这个问题(I didn't question it because that was specific to his problem)。我尝试在输入矩阵之中包含常数项,按照方法介绍的过程得到了类似的结果,所以这个方法的准确性不应是否包含常数项而存在不同,都是正确的。

References

[1] Rank deficient for multipl regression.

[2] Covariance, from Wikipedia, thefree encyclopedia.

[3] 浅谈协方差矩阵. XY相互独立协方差一定为零,但是其逆命题却不真。

[4] 协方差与相关系数.

[5] A matrix is said to have full rank if its rank equals the largest possible for a matrix of the same dimensions, which is the lesser of the number of rows and columns. A matrix is said to be rank deficient if it does not have full rank. Rank (linear algebra), from Wikipedia, the free encyclopedia.

[6] 同济大学数学系. 工程数学:线性代数(第六版). 北京:高等教育出版社, 2014.

[7] Getting rank deficient warning when using regress function in MATLAB?



https://blog.sciencenet.cn/blog-1148346-917270.html

上一篇:降采样方法小结
下一篇:Tools: Applications
收藏 IP: 202.112.90.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2025-1-10 09:37

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部