||
1. Yan-Jie Zhao, et al. Corrosion resistance of in situ steam LDH coating on AZ31 and AM30 Alloys: Influence of NaOH and Al–Mn phase, Smart Materials in Manufacturing, 2, 2024, 100045. https://doi.org/10.1016/j.smmf.2024.100045
2. Shi-Qi Pan, et al. Corrosion resistance of rapidly formed in-situ steam Mg-Al LDH coating on AM50 Mg alloy pretreated with oxalic acid. Transactions of Nonferrous Metals Society of China. https://link.cnki.net/urlid/43.1239.tg.20230823.1739.014
3. Shi-Qi Pan, et al. Advances in Mg–Al-layered double hydroxide steam coatings on Mg alloys: A review, Journal of Magnesium and Alloys, 11, 2023: 1505-1518, https://doi.org/10.1016/j.jma.2023.05.001
4. Zuo-Jun Jiao, et al. In vitro degradation and biocompatibility of in-situ fabricated Mg-Al-Ga-LDH/MAO hybrid coating on Mg alloy AZ31, Surface and Coatings Technology, 472, 2023, 129922. https://doi.org/10.1016/j.surfcoat.2023.129922
5. Jin-Meng Wang, et al. Corrosion resistance of Mg-Al-LDH steam coating on AZ80 Mg alloy: Effects of citric acid pretreatment and intermetallic compounds, Journal of Magnesium and Alloys, 11, 2023: 2967-2979. https://doi.org/10.1016/j.jma.2022.01.004
6. Feng LI, et al. Influence of intermetallic Al-Mn particles on in-situ steam Mg-Al-LDH coating on AZ31 magnesium alloy, Transactions of Nonferrous Metals Society of China, 32, 2022: 3926-3949. https://doi.org/10.1016/S1003-6326(22)66068-0
7. Chang-Yang Li, et al. In vitro degradation and cytocompatibility of a low temperature in-situ grown self-healing Mg-Al LDH coating on MAO-coated magnesium alloy AZ31, Bioactive Materials, 5, 2020: 364-376. https://doi.org/10.1016/j.bioactmat.2020.02.008
8. Zai-meng QIU, et al. Corrosion resistance of Mg−Al LDH/Mg(OH)2/silane−Ce hybrid coating on magnesium alloy AZ31, Transactions of Nonferrous Metals Society of China, 30, 2020: 2967-2979. https://doi.org/10.1016/S1003-6326(20)65435-8.
9. Zai-meng QIU, et al. Corrosion resistance and hydrophobicity of myristicacid modified Mg–Al LDH/Mg(OH)2 steam coating on magnesiumalloyAZ31. Front. Mater. Sci. 2020,14(1): 96–107. https://doi.org/10.1007/s11706-020-0492-x
10. Wei Wu , et al. Synthesis of glutamate intercalated Mg-Al layered double hydroxides: influence of stirring and aging time, Journal of Dispersion Science and Technology, (2020): https://doi.org/10.1080/01932691.2020.1806862
11. Wei Wu, et al. Biocorrosion resistance and biocompatibility of Mg–Al layered double hydroxide/poly-L-glutamic acid hybrid coating on magnesium alloy AZ31, Progress in Organic Coatings, 147, 2020, 105746, https://doi.org/10.1016/j.porgcoat.2020.105746.
12. Sun, X., et al. Biocorrosion resistance and biocompatibility of Mg-Al layered double hydroxide/poly(L-lactic acid) hybrid coating on magnesium alloy AZ31. Front. Mater. Sci. 14, 426–441 (2020). https://doi.org/10.1007/s11706-020-0522-8
13. Wu, W., et al. Corrosion resistance of a silane/ceria modified Mg-Al-layered double hydroxide on AA5005 aluminum alloy. Front. Mater. Sci. 13, 420–430 (2019). https://doi.org/10.1007/s11706-019-0476-x
14. Yao, QS., et al. Corrosion resistance of Mg(OH)2/Mg–Al-layered double hydroxide coatings on magnesium alloy AZ31: influence of hydrolysis degree of silane. Rare Met. 38, 629–641 (2019). https://doi.org/10.1007/s12598-019-01234-1
15. Lian Guo, et al. Layered double hydroxide coatings on magnesium alloys: A review, Journal of Materials Science & Technology, 34, 2018: 1455-1466. https://doi.org/10.1016/j.jmst.2018.03.003
16. Qing-Song Yao, et al. Corrosion resistance of a ceria/polymethyltrimethoxysilane modified Mg-Al-layered double hydroxide on AZ31 magnesium alloy, Journal of Alloys and Compounds, 764, 2018: 913-928. https://doi.org/10.1016/j.jallcom.2018.06.152
17. Guo, L., et al. A comparison of corrosion inhibition of magnesium aluminum and zinc aluminum vanadate intercalated layered double hydroxides on magnesium alloys. Front. Mater. Sci. 12, 198–206 (2018). https://doi.org/10.1007/s11706-018-0415-2
18. Fen Zhang, et al. Corrosion Resistance of the Superhydrophobic Mg(OH)2/Mg-Al Layered Double Hydroxide Coatings on Magnesium Alloys. Metals, 2016, 6,85. https://doi.org/10.3390/met6040085
19. Rong-chang ZENG, et al. Corrosion resistance of in-situ Mg–Al hydrotalcite conversion film on AZ31 magnesium alloy by one-step formation, Transactions of Nonferrous Metals Society of China, 25, 2015: 1917-1925. https://doi.org/10.1016/S1003-6326(15)63799-2
20. Fen ZHANG, et al. Corrosion of in-situ grown MgAl-LDH coating on aluminum alloy, Transactions of Nonferrous Metals Society of China, 25, 2015: 3498-3504, https://doi.org/10.1016/S1003-6326(15)63987-5.
21. Zeng, RC., et al. Corrosion resistance of Zn–Al layered double hydroxide/poly(lactic acid) composite coating on magnesium alloy AZ31. Front. Mater. Sci. 9, 355–365 (2015). https://doi.org/10.1007/s11706-015-0307-7
22. Zhang, F., et al. Corrosion Resistance of Superhydrophobic Mg–Al Layered Double Hydroxide Coatings on Aluminum Alloys. Acta Metall. Sin. (Engl. Lett.) 28, 1373–1381 (2015). https://doi.org/10.1007/s40195-015-0335-4
23. Fen Zhang, et al. Corrosion resistance of Mg–Al-LDH coating on magnesium alloy AZ31, Surface and Coatings Technology, 258, 2014: 1152-1158. https://doi.org/10.1016/j.surfcoat.2014.07.017.
24. Rong-Chang Zeng, et al. Corrosion of molybdate intercalated hydrotalcite coating on AZ31Mg alloy. Journal of Materials Chemistry A, 2014, 2,13049–13057. https://doi.org/10.1039/C4TA01341G
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-24 10:34
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社