yzhlinscau的个人博客分享 http://blog.sciencenet.cn/u/yzhlinscau

博文

双列杂交试验之ASReml-R篇

已有 4207 次阅读 2013-10-27 20:57 |个人分类:ASReml|系统分类:科研笔记

某林木有8个亲本,进行双列杂交试验,随机完全区组设计,下设2区组。目标性状为10年生胸径。


分析代码如下:

1
2
3
4
5
6
7
8
#################### diallel mate design ########################
library(asreml)
df<-asreml.read.table(file='dial.to.csv',header=T,sep=',')
df.asr<-asreml(dbh~1,random=~ Block+Male+and(Female)+Fam+Female+Recipro,
               data= df, maxit=50)
summary(df.asr)$varcomp
#dial.to.bv<-coef(df.asr)$random
#write.csv(dial.to.bv,file='dial.to.bv.csv')

代码说明:dbh是胸径,block是区组,Male是父本,Female是母本,Fam是家系,Recipro是杂交组合代码。


运行结果如下:

1
2
3
4
5
6
7
8
> summary(df.asr)$varcomp
                        gamma  component std.error   z.ratio constraint
Block!Block.var     0.00591629 0.01996032 0.1032074 0.1934001   Positive
Male!Male.var       2.01274534 6.79057951 4.1035712 1.6547975   Positive
Fam!Fam.var         0.62227576 2.09942755 1.7345587 1.2103525   Positive
Female!Female.var   1.36716171 4.61251611 3.2528596 1.4179881   Positive
Recipro!Recipro.var 1.23917287 4.18070869 1.8172940 2.3005131   Positive
R!variance          1.00000000 3.37378971 0.6011222 5.6124861   Positive

本例中,可以看出,虽然亲本一样,但作为父本和母本时,所得的方差分量不同,而且各自作为父本和母本时所得的育种值也不同,根据所得的父母本育种值,可知哪些亲本作为父本,哪些亲本作为母本,杂交结果会比较好。同时,杂交组合的育种值,可以分析特殊配合力,即哪些亲本相互组合可以获得更高的杂种优势。具体如下:


输出各亲本作为父本时的育种值:

1
2
3
4
5
6
7
8
9
10
> coef(df.asr, pattern = 'Male')
           effect
Male_G1  2.8419922
Male_G2 -0.8390384
Male_G3  4.4844745
Male_G4 -1.3457288
Male_G5 -1.2762229
Male_G6  0.1061856
Male_G7 -2.9641414
Male_G8 -1.0075208

输出各亲本作为母本时的育种值;

1
2
3
4
5
6
7
8
9
10
> coef(df.asr, pattern = 'Female')
             effect
Female_G1  0.1570306
Female_G2 -0.9412692
Female_G3 -2.4065105
Female_G4  3.4034672
Female_G5  1.1377920
Female_G6  1.2131451
Female_G7 -0.8119395
Female_G8 -1.7517159

最后,输出各杂交组合的育种值:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
> coef(df.asr, pattern = 'Recipro')
                 effect
Recipro_G1G1  0.55834654
Recipro_G1G2 -0.91213753
Recipro_G1G3  3.17754153
Recipro_G1G4  0.52682385
Recipro_G1G5  0.21302846
Recipro_G1G6 -2.71220293
Recipro_G1G7  0.67080105
Recipro_G1G8  0.08522780
Recipro_G2G1 -1.23155531
Recipro_G2G2  2.11181041
Recipro_G2G3 -2.16858281
Recipro_G2G4  0.63198062
Recipro_G2G5 -0.11236810
Recipro_G2G6 -0.42798672
Recipro_G2G7  1.64849755
Recipro_G2G8 -0.11519544
Recipro_G3G1  2.84726418
Recipro_G3G2  1.98873719
Recipro_G3G3 -0.08260142
Recipro_G3G4  1.16595510
Recipro_G3G5 -0.44464843
Recipro_G3G6  4.08785230
Recipro_G3G7 -2.02457838
Recipro_G3G8 -2.59567082
Recipro_G4G1 -0.79385737
Recipro_G4G2 -0.83241389
Recipro_G4G3 -0.71508543
Recipro_G4G4  0.46861624
Recipro_G4G5 -0.59370006
Recipro_G4G6 -0.55839345
Recipro_G4G7  0.75871240
Recipro_G4G8 -1.64737575
Recipro_G5G1 -0.90506868
Recipro_G5G2 -0.30541453
Recipro_G5G3 -0.98308996
Recipro_G5G4 -1.35300358
Recipro_G5G5  0.01032860
Recipro_G5G6  0.31743070
Recipro_G5G7 -0.45002689
Recipro_G5G8  1.85178415
Recipro_G6G1  1.81658791
Recipro_G6G2 -0.31796512
Recipro_G6G3 -2.16822503
Recipro_G6G4  0.58851704
Recipro_G6G5 -0.48389074
Recipro_G6G6  1.77341580
Recipro_G6G7 -1.62984070
Recipro_G6G8 -0.61283634
Recipro_G7G1 -0.87461037
Recipro_G7G2 -1.03814021
Recipro_G7G3  0.10908140
Recipro_G7G4 -1.03353833
Recipro_G7G5  1.22456136
Recipro_G7G6 -0.43644782
Recipro_G7G7  0.60097623
Recipro_G7G8  0.35910350
Recipro_G8G1 -1.27477188
Recipro_G8G2 -1.54765747
Recipro_G8G3  0.64966283
Recipro_G8G4  2.08960523
Recipro_G8G5  1.21800148
Recipro_G8G6 -0.94405411
Recipro_G8G7 -0.31049596
Recipro_G8G8  1.08718011




https://blog.sciencenet.cn/blog-1114360-736604.html

上一篇:颜色等高图之R篇
下一篇:列联表检验之R篇
收藏 IP: 58.254.92.*| 热度|

0

该博文允许注册用户评论 请点击登录 评论 (0 个评论)

数据加载中...
扫一扫,分享此博文

Archiver|手机版|科学网 ( 京ICP备07017567号-12 )

GMT+8, 2024-12-28 05:38

Powered by ScienceNet.cn

Copyright © 2007- 中国科学报社

返回顶部