|||
第二步来证明: $\max_{\lambda ;\lambda \geq0}{\min_{x}{L(x,\lambda )}} \leqslant \min_{x}{\max_{\lambda ;\lambda \geq0}{L(x,\lambda )}}$ (1)
由于原始问题和对偶问题均有最优值,所以可分别假设
$\max_{\lambda ;\lambda \geq0}{\min_{x}{L(x,\lambda )}}={L(x_{0},\lambda_{0})}$
$\min_{x}{\max_{\lambda ;\lambda \geq0}{L(x,\lambda )}}={L(x_{1},\lambda_{1})}$
那么,对于任意 $x$ 下式成立,
${L(x_{0},\lambda_{0})}\leq {L(x,\lambda_{0})}$ (2)
对于任意 $\lambda$ 下式成立,
${L(x_{1},\lambda_{1})}\geq {L(x_{1},\lambda)}$ (3)
所以,
${L(x_{1},\lambda_{1})}\geq {L(x_{1},\lambda_{0})}\geq {L(x_{0},\lambda_{0})}$ (4)
因此,(1)式成立。
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-21 23:52
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社