||
“目前我国小麦赤霉病年均发生面积超过 533.3 万公顷,其中 2012、 2015 和 2016 年尤为严重。江苏省 2012—2015 年均发生面积约 120 万公顷,超过该省小麦种植面积的 50%;河南省 2012 年发生最为严重,发病面积达 339.7 万公顷, 2016年次之,为 174.0 万公顷。感病籽粒含真菌毒素如脱氧雪腐镰刀菌烯醇(deoxynivalenol, DON),不仅危害人畜健康,还严重影响食用和饲用价值。” 读完这段文中对赤霉病的介绍,就可以理解我们为什么这么关注赤霉病,为什么这么关注PFT。今天推送这篇文章的原因是它不仅仅是对PFT做了验证,更关键的是对另外一个Fhb1 位点的候选基因His做了验证,而且提出了非常重要的结论。 文章摘要:研究通过分析229 份小麦品种(系) Fhb1 区段内PFT (pore-forming toxin-like)、HC (HCBT-like defense response protein)和His (histidine-rich calcium-binding protein) 基因的多样性与赤霉病抗性的关系,发现PFT-I/His-I 为抗病单倍型。基因检测和系谱分析表明,中国小麦品种所含Fhb1 至少有2 个来源,分别为苏麦3 号和宁麦9 号,并以后者为主。本研究开发的诊断性标记PFT-CAPS 和His-InDel 可有效用于Fhb1 的分子标记辅助育种。 首先这篇文章中对PFT的验证结果基本和我们上次介绍的几个研究是一样的,即含有PFT的品种不一定是抗病的:综合测序和 PFT-CAPS 标记检测结果表明,在 229 份品种(系)中有 24 份与苏麦 3 号序列相同,为 PFT-I基因型,35 份为 PFT-II 基因型(感病型),其余 170 份为 PFT-III 基因型(感病型)。西农 9871 和小偃 22 等高感赤霉病品种也为 PFT-I 基因型,表明单独 PFT-CAPS 不能作为 Fhb1 的诊断性标记。 然后文章又对Hisgene做了验证,关于这个Hisgene,我们在2月7号推送过一篇国家小麦产业技术体系所撰写的2017年小麦赤霉病抗性遗传资源与基因定位研究进展,其中里面提到:美国堪萨斯州立大学的柏贵华教授则认为PFT座位侧翼的His基因(histidine-rich calcium-binding protein,又名His基因或者TaHRC)是Fhb1的候选基因,他们通过对广泛收集的抗性资源序列分析,发现抗性材料中的His基因普遍存在750bp的缺失,并发现发生His基因缺失的种质仅分布于中国华南地区和日本的一些材料中。柏贵华教授团队进一步采用RNA干扰和基因编辑实验证实His基因是Fhb1的抗性基因。 朱老师这篇文章利用 His3B-4 对上述材料的 His 基因测序,发现 3 种等位基因,分别记为 His-I (1309 bp)、 His-II (2061bp)和 His-III (2061 bp),其中 His-I 起始密码子附近有 752 bp 整段缺失, His-III 较 His-II 有 4 个 SNP 变异(下图)。苏麦 3 号和宁 7840 等 6 个品种为 His-I 型,西农 9871 和小偃 22 等 17 个品种(系)为 His-II 型,烟 2415为 His-III 型(表 3)。 His 位点能区分苏麦 3 号和西农 9871 等感病品种,可用于诊断性标记开发。 最后,文章将上述两个gene关联起来验证与表型的关系, PFT-I 记为 PFT(+),其他等位基因记为 PFT(-);将 His-I 记为 His(+),其他等位基因记为 His(-)。在 229 份品种(系)中,有 6 份为含 Fhb1 的 PFT(+)/His(+)类型,其平均病情指数为 29.9;18 份为 PFT(+)/His(-)类型,其平均病情指数为 61.8,与前者差异极显著(P < 0.001);有 205 份为 PFT(-)/His(-)类型,其平均病情指数为 60.2,与 PFT(+)/His(-)差异不显著(P = 0.73);未发现 PFT(-)/His(+)类型品种(图 5)。