||
The kernel of "P vs NP Problem":
Axiom of power set!
It can be found that a Non-Deterministic Turing Machine can generate a power set of its corresponding Deterministic Turing Machine in a linear time.
If "Axiom of power set" is accepted, then P ≠ NP for a Deterministic Turing Machine.
Thank you for your guidance!
References:
[1] ZFC, Zermelo–Fraenkel set theory with the axiom of choice
http://www.encyclopediaofmath.org/index.php/ZFC
[2] Axiomatic set theory
http://www.encyclopediaofmath.org/index.php/Axiomatic_set_theory
[3] Axiom of the Power Set
http://mathworld.wolfram.com/AxiomofthePowerSet.html
[4] P vs NP Problem - Clay Mathematics Institute
http://www.claymath.org/millenium-problems/p-vs-np-problem
[5] A non-canonical example to support P is not equal to NP, Transactions of Tianjin University, December 2011, Volume 17, Issue 6, pp 446-449
http://link.springer.com/article/10.1007/s12209-011-1593-5
2012年 William I. Gasarch 对“P对NP”的专家观点调查汇总
http://www.cs.umd.edu/~gasarch/papers/poll2012.pdf
相关链接:
[1] 2011-09-15,A FULL PROOF to the P versus NP problem
http://blog.sciencenet.cn/blog-107667-486692.html
[2] 2012-03-23,[请教] P对NP:请郝克刚教授等专家指教(一)
http://blog.sciencenet.cn/blog-107667-550859.html
[3] 2011-08-21,俗解Chaitin定理
http://blog.sciencenet.cn/blog-107667-478066.html
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-12-23 23:09
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社