||
“只要自然科学在思维着,它的发展形式就是假说。”
“最好的均匀分布随机数”的一些说明
经过多年艰苦卓绝的努力,我们发现了“统计性能超过真随机数”的“服从指定的理论分布,特别具有显式概率密度函数的指定分布”的伪随机数。
在现有利用数字计算机生成“伪随机数”的基础上,进一步显著地、确定地降低了“伪随机数的统计量”与其对应理论值之间的差异。使得这些随机数的各阶矩很接近其理论值。我们的方法也可以以实际物理设备生成的“真随机数”为基础。
我们的新伪随机数,主要用于《数据统计学》里“置信区间”的数值仿真/实验,也可用于蒙特卡洛类的随机方法。
由于我们没有找到“证明其为最优”的理论性方法,所以将程序生成的结果列出来,敬请有关专家的检验。感谢!
疑问与困惑
存在证明某随机数序列为“最优”的理论性方法吗?
Eshan Chattopadhyay, David Zuckerman. Explicit two-source extractors and resilient functions [J]. Annals of Mathematics, 2019, 189(3): 653-705.
到底说了些什么?能用来证明我们的新算法吗?
相关资料:
[1] csdn,2017-07-03,真随机数要产生了 作为安全人员你知道这意味着什么吗?
https://blog.csdn.net/weixin_33904756/article/details/90507381
[2] solidot,2016-05-18,随机数生成获得重大理论突破
https://www.solidot.org/story?sid=48253
[3] 蒋迅,2016-06-02,【数学都知道】2016年6月2日 精选
http://blog.sciencenet.cn/blog-420554-981867.html
学者在随机数产生问题上取得理论突破
[4] 中国大百科全书•数学条目:伪随机数(pseudo-random numbers).
http://ecph.cnki.net/Allword.aspx?ObjID=87328&Vol=%u6570%u5b66
Random and pseudo-random numbers. Encyclopedia of Mathematics.
https://encyclopediaofmath.org/wiki/Random_and_pseudo-random_numbers
[6] RANDOM.ORG,https://www.random.org/
[7] Eshan Chattopadhyay, David Zuckerman, 2016-03-20, Explicit two-source extractors and resilient functions.
http://eccc.hpi-web.de/report/2015/119/
We explicitly construct an extractor for two independent sources on n bits, each with min-entropy at least logCn for a large enough constant~C. Our extractor outputs one bit and has error n−(1). The best previous extractor, by Bourgain, required each source to have min-entropy 499n.
A key ingredient in our construction is an explicit construction of a monotone, almost-balanced Boolean function on n bits that is resilient to coalitions of size n1−, for any 0. In fact, our construction is stronger in that it gives an explicit extractor for a generalization of non-oblivious bit-fixing sources on n bits, where some unknown n−q bits are chosen almost \polylog(n)-wise independently, and the remaining q=n1− bits are chosen by an adversary as an arbitrary function of the n−q bits. The best previous construction, by Viola, achieved q=n12− .
Our explicit two-source extractor directly implies an explicit construction of a 2(loglogN)O (1)-Ramsey graph over N vertices, improving bounds obtained by Barak et al.\ and matching an independent work by Cohen.
[7-2] Eshan Chattopadhyay, David Zuckerman. Explicit two-source extractors and resilient functions [J]. Annals of Mathematics, 2019, 189(3): 653-705.
[8] Michael Mimoso, 2016-05-17, Academics make theoretical breakthrough in random number generation.
https://threatpost.com/academics-make-theoretical-breakthrough-in-random-number-generation/118150/
[8] 高惠璇. 统计计算. 北京大学出版社, 1995
[9] 简明数学手册. 上海教育出版社, 1977, 第5-36页
相关链接:
[1] 2021-01-30,[再擂台] 最好的100个均匀分布随机数 The best 100 uniformly distributed random numbers
http://blog.sciencenet.cn/blog-107667-1269740.html
[2] An explicit analytical estimation of the validity of the Tanimoto similarity by confidence intervals in mathematical statistics [C]. Proceedings of the 2018 13th World Congress on Intelligent Control and Automation: 979-984. (EI).
https://ieeexplore.ieee.org/document/8630700/
[3] 2019-07-16,会议论文公式纠错:Tanimoto similarity 谷本系数的置信区间
http://wap.sciencenet.cn/blog-107667-1189819.html
感谢您的指教!
感谢您指正以上任何错误!
感谢您提供更多的相关资料!
Archiver|手机版|科学网 ( 京ICP备07017567号-12 )
GMT+8, 2024-11-20 00:39
Powered by ScienceNet.cn
Copyright © 2007- 中国科学报社