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a b s t r a c t

Estimating the fundamental frequency and harmonic parameters is basic for signal mod-
elling in a power supply system. This paper presents a gradient based algorithm and a least
squares based algorithm to estimate the fundamental frequency, the amplitudes and the
phases of harmonicwaves according to the voltage/current samples of a power system. Dif-
fering from the existing parameter estimation algorithms either for power qualitymonitor-
ing or for harmonic compensation, the proposed algorithms are based on the hierarchical
identification principle and are able to estimate the fundamental frequency, the amplitudes
and the phases of harmonicwaves simultaneously. In addition, the proposed algorithms are
in the recursive form, which is suitable for on-line implementation. The simulation results
verify the effectiveness of the proposed algorithms.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Signalmodelling and parameter estimation have receivedmuch research attention in signal processing and identification
[1,2]; for example, Ding et al. presented time series AR modelling with missing observations based on the polynomial
transformation [3]; Han et al. proposed an auxiliarymodel identificationmethod formultiratemulti-input systems based on
least squares [4] and a multi-innovation stochastic gradient algorithm for multi-input multi-output systems [5]; Liu et al.
developed a multi-innovation stochastic gradient algorithm for multiple-input single-output systems using an auxiliary
model [6]; they also give an auxiliary model based recursive least squares algorithm for parameter estimation in non-
uniformly sampled systems [7,8].
Recently, Wang and Ding presented an extended stochastic gradient identification algorithm for nonlinear systems

[9–11]; Ding et al. proposed a multi-innovation stochastic gradient algorithm for linear regression models [12] and derived
an auxiliarymodel based extended stochastic gradient algorithm for output errormoving averagemodels [13]. In this paper,
the frequency and amplitude estimation problems will be studied for periodic signal modelling.
The frequency of an electrical power system is a significant operating parameter; not only does it indicate the dynamic

balance between power generation and power consumption, but also the frequency deviation results in a component-
reactance change which influences different relay functionality [14]. Thereby the system frequency can be regarded as
a reasonable indicator to detect abnormal operating conditions. Several algorithms have been developed, such as the
zero-crossing based methods [15,16], the discrete Fourier transform and its modifications [15,17], the Kalman filtering
method [18], and the phase-locked loop [19], aiming to estimate power system frequencies. In addition, the proliferation
of power electronic devices induces harmonic pollution to power systems, causing operational problems such as signal
interference and malfunction of relays [20]; therefore harmonic measurement and compensation have become one of
the most significant aspects of power quality monitoring and control [21]. In the time domain, the method based on the
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instantaneous reactive power theory has been widely adopted for harmonic compensation, in which the harmonic signals
are extracted from both voltage and current measurements [22]. In the frequency domain, besides the analytical Fourier
methods such as the discrete Fourier transform [23], Kalman filtering [24] allows optimal real-time estimation of harmonic
parameters. These frequency domain methods use either the voltage or the current signal and can detect specific harmonic
components [25].
On the basis of the work in [26,27], this paper presents a gradient based algorithm and a least squares based algorithm

to estimate the fundamental frequency and the harmonic parameters of a power system according to the samples of the
voltage/current signal. The proposed algorithms are able to estimate the fundamental frequency, the amplitudes and the
phases of the harmonic waves simultaneously using the hierarchical identification principle and are easy to implement
on-line.
The rest of this paper is organized as follows. Section 2 gives the parameter and frequency identification model for

periodic signals. Section 3 derives a gradient based estimation algorithm for the fundamental frequency, and amplitudes
of the fundamental wave and harmonics. Section 4 presents a least squares based frequency and parameter estimation
algorithm using the hierarchical identification principle. Section 5 gives an illustrative example to show the effectiveness of
the least squares based algorithm. The conclusions of the paper are summarized in Section 6.

2. Identification models for periodic signals

A distorted electric signal s(t) from an AC power system can be expressed in the form of Fourier series:

s(t) = a0 +
∞∑
n=1

(an cos nωt + bn sin nωt), (1)

where ω is the fundamental frequency of the AC system; n denotes the harmonic index, and an, bn (n = 1, 2, 3, . . .) are the
Fourier coefficients of the nth harmonic; a0 denotes the system DC component; here we assume that a0 = 0, for there is
generally no DC component for a typical AC power system. In addition, finite harmonics are generally substituted for the
infinite harmonics in practice. Thus with the assumption that the largest harmonic index is N , Eq. (1) can be rewritten as

s(t) '
N∑
n=1

(an cos nωt + bn sin nωt), (2)

or

s(t) =
N∑
n=1

(an cos nωt + bn sin nωt)+ v(t), (3)

where v(t) is the approximate error and may be regarded as a stochastic white noise with zero mean.
For simplification, let sk := s(tk), vk := v(tk); then, from Eq. (3), we have

sk =
N∑
n=1

(an cos nωtk + bn sin nωtk)+ vk. (4)

Define the parameter vector θ and information vector ϕ(ω, k) as

θ := [a1, b1, a2, b2, . . . , aN , bN ]T ∈ R2N ,
ϕ(ω, k) := [cosωtk, sinωtk, cos 2ωtk, sin 2ωtk, . . . , cosNωtk, sinNωtk]T ∈ R2N .

Then Eq. (4) can be rewritten as

sk = ϕT(ω, k)θ + vk. (5)

The objective of this paper is to present new identification algorithms to estimate the frequency ω and unknown
parameter vector θ according to the samples s(tk) (k = 0, 1, 2, . . .) of s(t).

3. The gradient based estimation algorithm

Define a quadratic criterion function:

J1(θ, ω) :=
[
sk − ϕT(ω, k)θ

]2
. (6)

The partial derivatives of J1(θ, ω)with respect to θ and ω are
∂ J1(θ, ω)
∂θ

= −2ϕ(ω, k)[sk − ϕT(ω, k)θ],

∂ J1(θ, ω)
∂ω

= −2θTϕ′ω(ω, k)[sk − ϕ
T(ω, k)θ],
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where

ϕ′ω(ω, k) =
∂ϕ(ω, k)
∂ω

= [−tk sinωtk, tk cosωtk,−2tk sin 2ωtk, 2tk cos 2ωtk, . . . ,−Ntk sinNωtk,Ntk cosNωtk]T .

The gradient of J1(θ, ω) is given by

grad[J1(θ, ω)] =


∂ J1(θ, ω)
∂θ

∂ J1(θ, ω)
∂ω

 = −2 [ ϕ(ω, k)[sk − ϕT(ω, k)θ]
θTϕ′ω(ω, k)[sk − ϕ

T(ω, k)θ]

]
∈ R2N+1. (7)

Let

ψ(θ, ω, k) :=
[
ϕ(ω, k)
θTϕ′ω(ω, k)

]
.

Eq. (7) can be rewritten as

grad[J1(θ, ω)] = −2ψ(θ, ω, k)[sk − ϕT(ω, k)θ]. (8)

Let θ̂k and ω̂k be the estimates of θ and ω, respectively. Using the negative gradient search to minimize J1(θ, ω), we can
obtain the following recursive equation:[

θ̂k
ω̂k

]
=

[
θ̂k−1
ω̂k−1

]
−
µk

2
grad [J1(θ, ω)]

∣∣∣∣
θ=θ̂k−1,ω=ω̂k−1

=

[
θ̂k−1
ω̂k−1

]
+ µkψ(θ̂k−1, ω̂k−1, k)[sk − ϕT(ω̂k−1, k)θ̂k−1],

where µk is the step-size to be given later. Let

ek := sk − ϕT(ω̂k−1, k)θ̂k−1; (9)

we have[
θ̂k
ω̂k

]
=

[
θ̂k−1
ω̂k−1

]
+ µkψ(θ̂k−1, ω̂k−1, k)ek. (10)

The following finds a best step-size µk by solving minµk>0 J1(θ̂k, ω̂k). Let

g(µk) := J1(θ̂k, ω̂k). (11)

Substituting Eq. (10) into Eq. (11), we have

g(µk) =
[
sk − ϕT(ω̂k, k)θ̂k

]2
=
{
sk − ϕT[ω̂k−1 + µkθ̂

T
k−1ϕ

′

ω(ω̂k−1, k)ek, k][θ̂k−1 + µkϕ(ω̂k−1, k)ek]
}2
. (12)

Let ‖X‖2 := tr[XXT]; using the first-order Taylor expansion of ϕ(ω, k) at ω̂k−1 gives

g(µk) =
{
sk − [ϕT(ω̂k−1, k)+ [ϕ′ω(ω̂k−1, k)]

T(ω̂k − ω̂k−1)+ o(ω̂k − ω̂k−1)]θ̂k
}2

=
{
sk − [ϕT(ω̂k−1, k)+ [ϕ′ω(ω̂k−1, k)]

Tµkθ̂
T
k−1ϕ

′

ω(ω̂k−1, k)ek + o(ω̂k − ω̂k−1)]θ̂k
}2

=
{
sk − ϕT(ω̂k−1, k)[θ̂k−1 + µkϕ(ω̂k−1, k)ek]

− [ϕ′ω(ω̂k−1, k)]
Tµkθ̂

T
k−1ϕ

′

ω(ω̂k−1, k)ek[θ̂k−1 + µkϕ(ω̂k−1, k)ek] − o(ω̂k − ω̂k−1)
}2

=

{
[sk − ϕT(ω̂k−1, k)θ̂k−1] − ek‖ϕ(ω̂k−1, k)‖2µk − ek‖θ̂

T
k−1ϕ

′

ω(ω̂k−1, k)‖
2µk

− e2kϕ
T(ω̂k−1, k)θ̂k−1‖ϕ′ω(ω̂k−1, k)‖

2µ2k − o(ω̂k − ω̂k−1)
}2

= e2k
{
1−

[
‖ϕ(ω̂k−1, k)‖2 + ‖θ̂

T
k−1ϕ

′

ω(ω̂k−1, k)‖
2]µk

− ekϕT(ω̂k−1, k)θ̂k−1‖ϕ′ω(ω̂k−1, k)‖
2µ2k − o(ω̂k − ω̂k−1)

}2
= e2k

[
1− ‖ψ(θ̂k−1, ω̂k−1, k)‖2µk − ξkµ2k

]2
+ o(ω̂k − ω̂k−1)2, (13)
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where
ξk := ekϕT(ω̂k−1, k)θ̂k−1‖ϕ′ω(ω̂k−1, k)‖

2.

Then the optimal µk can be obtained by minimizing g(µk). This leads to

1− ‖ψ(θ̂k−1, ω̂k−1, k)‖2µk − ξkµ2k = 0. (14)
Its solution is

µk =

√
‖ψ(θ̂k−1, ω̂k−1, k)‖4 + 4ξk − ‖ψ(θ̂k−1, ω̂k−1, k)‖2

2ξk

=
2√

‖ψ(θ̂k−1, ω̂k−1, k)‖4 + 4ξk + ‖ψ(θ̂k−1, ω̂k−1, k)‖2
. (15)

Eqs. (10), (9) and (15) form the gradient based algorithm for estimating θ and ω.

4. The least squares based estimation algorithm

Besides the above gradient based method, the unknown parameters θ and ω in Eq. (5) can also be estimated using the
least squares method. According to the least squares principle, define a criterion function:

J2(θ, ω) :=
1
2

k∑
i=1

[si − ϕT(ω, i)θ]2. (16)

Taylor expansions of J2(θ, ω) at θ̂k−1 and ω̂k−1 are shown as follows:

J2(θ, ω) = J2(θ̂k−1, ω)+
∂ J2(θ̂k−1, ω)

∂θ
(θ − θ̂k−1)+

1
2
(θ − θ̂k−1)

T ∂
2J2(θ̂k−1, ω)

∂θ∂θT
(θ − θ̂k−1)+ o(‖θ − θ̂k−1‖2), (17)

J2(θ, ω) = J2(θ, ω̂k−1)+
∂ J2(θ, ω̂k−1)

∂ω
(ω − ω̂k−1)+

1
2
∂2J2(θ, ω̂k−1)

∂ω2
(ω − ω̂k−1)

2
+ o(|ω − ω̂k−1|2). (18)

Let

∂ J2(θ̂k, ω)
∂θ

= 0,
∂ J2(θ, ω̂k)
∂ω

= 0, (19)

which leads to the corresponding Newton algorithms:

θ̂k = θ̂k−1 −

[
∂2J2(θ̂k−1, ω)

∂θ∂θT

]−1
∂ J2(θ̂k−1, ω)

∂θ
, (20)

ω̂k = ω̂k−1 −

[
∂2J2(θ, ω̂k−1)

∂ω2

]−1
∂ J2(θ, ω̂k−1)

∂ω
. (21)

Using Eq. (16), we have

θ̂k = θ̂k−1 +

[
k∑
i=1

ϕ(ω, i)ϕT(ω, i)

]−1 k∑
i=1

ϕ(ω, i)[si − ϕT(ω, i)θ̂k−1]. (22)

Let

Pk :=

[
k∑
i=1

ϕ(ω, i)ϕT(ω, i)

]−1
; (23)

then Eq. (22) can be rewritten as

θ̂k = θ̂k−1 + Pk

{
ϕ(ω, k)[sk − ϕT(ω, k)θ̂k−1] +

k−1∑
i=1

ϕ(ω, i)[si − ϕT(ω, i)θ̂k−1]

}

= θ̂k−1 + Pkϕ(ω, k)[sk − ϕT(ω, k)θ̂k−1] + Pk
k−1∑
i=1

ϕ(ω, i)[si − ϕT(ω, i)θ̂k−1]

= θ̂k−1 + Pkϕ(ω, k)[sk − ϕT(ω, k)θ̂k−1] + Pk
∂ J2(θ̂k−1, ω)

∂θ

= θ̂k−1 + Pkϕ(ω, k)[sk − ϕT(ω, k)θ̂k−1]. (24)
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To avoid computing the inverse matrix Pk, applying the formulae [28]

(A+ BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1

to Eq. (23) gives

Pk = Pk−1 −
Pk−1ϕ(ω, k)ϕT(ω, k)Pk−1
1+ ϕT(ω, k)Pk−1ϕ(ω, k)

, P0 = p0I . (25)

Define φ as the first-order partial derivative of the criterion function J2 with respect to ω at time k− 1:

φ(θ, ω) := −

k−1∑
i=1

(ϕ′ω)
T(ω, i)θ[si − ϕT(ω, i)θ], φ(θ, ω̂k−1) = 0. (26)

Let

ε(θ, ω) := sk − ϕT(ω, k)θ, (27)

ζ (θ, ω) := −
∂ε(θ, ω)

∂ω
= (ϕ′ω)

T(ω, k)θ, (28)

when ω = ω̂k−1, the first-order partial derivative of J2 at time kwith respect to ω is

∂ J2(θ, ω̂k−1)
∂ω

= −

k∑
i=1

[ϕ′ω(ω̂k−1, i)]
Tθ[si − ϕT(ω̂k−1, i)θ]

= −[ϕ′ω(ω̂k−1, k)]
Tθ[sk − ϕT(ω̂k−1, k)θ] −

k−1∑
i=1

[ϕ′ω(ω̂k−1, i)]
Tθ[si − ϕT(ω̂k−1, i)θ]

= −ζ (θ, ω̂k−1)ε(θ, ω̂k−1)+ φ(θ, ω̂k−1)

= −ζ (θ, ω̂k−1)ε(θ, ω̂k−1). (29)

The second-order partial derivative of J2 at time kwhen ω = ω̂k−1 can be given as

∂ J22 (θ, ω̂k−1)
∂ω2

=
∂φ(θ, ω̂k−1)

∂ω
+ ζ 2(θ, ω̂k−1)+

∂2ε(θ, ω̂k−1)

∂ω2
ε(θ, ω̂k−1). (30)

Neglecting the last item, Eq. (30) is reduced to

∂ J22 (θ, ω̂k−1)
∂ω2

=
∂φ(θ, ω̂k−1)

∂ω
+ ζ 2(θ, ω̂k−1). (31)

Let

Rk :=
∂ J22 (θ, ω̂k−1)

∂ω2
=
∂φ(θ, ω̂k−1)

∂ω
+ ζ 2(θ, ω̂k−1). (32)

Obviously Rk−1 is the second-order partial derivative of J2 at time k− 1 when ω = ω̂k−2; according to the definition of φ in
Eq. (26), Rk−1 can be expressed as

Rk−1 =
∂φ(θ, ω̂k−2)

∂ω
. (33)

Approximating ∂φ(θ,ω̂k−1)
∂ω

by ∂φ(θ,ω̂k−2)
∂ω

in (32) and using (33), we have

Rk = Rk−1 + ζ 2(θ, ω̂k−1) = Rk−1 + {[ϕ′ω(ω̂k−1, k)]
Tθ}2. (34)

Substituting (29) and (32) into (21), the iterative algorithm of ω can be achieved:

ω̂k = ω̂k−1 + R−1k ζ (θ, ω̂k−1)ε(θ, ω̂k−1)

= ω̂k−1 + R−1k [ϕ
′

ω(ω̂k−1, k)]
Tθ[sk − ϕT(ω̂k−1, k)θ]. (35)

However, the above algorithm in (24) and (25) or in (34) and (35) is technically impossible to be implemented since each
of them contains an unknown parameter or parameter vector, i.e. ω or θ. To solve this difficulty, we use the hierarchical
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Table 1
The parameter and frequency estimates and errors.

k a1 b1 a2 b2 ω δ (%)

1 68.40651 88.48776 −27.16348 107.79215 319.15926 59.61121
2 102.97164 57.40956 61.10889 134.71411 319.16482 54.36552
5 260.92582 65.65123 36.14786 21.64655 319.19376 11.68815
10 299.12142 47.13965 19.17972 8.25504 319.22128 2.06155
20 297.93661 47.21945 19.26988 8.92053 319.13759 2.08395
30 298.54934 47.51381 19.65887 8.59253 317.68829 1.95755

True values 300.00000 40.00000 20.00000 10.00000 314.15927

Fig. 1. The estimation error δ versus k.

identification principle [29–31]: replacing ω in (24) and (25) with ω̂k−1 and θ in (34) and (35) with θ̂k−1 leads to the least
squares based algorithm for estimating θ and ω:

θ̂k = θ̂k−1 + Pkϕ(ω̂k−1, k)[sk − ϕT(ω̂k−1, k)θ̂k−1], (36)

Pk = Pk−1 −
Pk−1ϕ(ω̂k−1, k)ϕT(ω̂k−1, k)Pk−1
1+ ϕT(ω̂k−1, k)Pk−1ϕ(ω̂k−1, k)

, P0 = p0I, (37)

ω̂k = ω̂k−1 + R−1k [ϕ
′

ω(ω̂k−1, k)]
Tθ̂k−1[sk − ϕT(ω̂k−1, k)θ̂k−1], (38)

Rk = λRk−1 + {[ϕ′ω(ω̂k−1, k)]
Tθ̂k−1}

2, 0 6 λ 6 1. (39)

In this algorithm, we have introduced a forgetting factor λ in (39). The initial value θ̂0 is taken to be a random vector, ω̂0 to
be a random number, P0 = p0I , p0 = 106 and R0 = 1.

5. Example

Consider the following corrupted voltage signal:

y(t) = a1 cos(ωt)+ b1 sin(ωt)+ a2 cos(2ωt)+ b2 sin(2ωt)+ v(t),

whereω = 2π f , f = 50 Hz is the fundamental frequency, and the amplitudes of the harmonic waves are a1 = 300, b1 = 40,
a2 = 20 and b2 = 10.
In simulation, {v(t)} is taken as a white noise process with zero mean and variance σ 2 = 0.502. Using the measured

discrete samples {sk, s = 0, 1, 2, . . .}, applying the proposed least squares based algorithm in (36)–(39) with λ = 0.20
to estimate parameters ai, bi and frequency ω, the parameter and frequency estimates are shown in Table 1, where the
estimation error

δ :=

√
‖θ̂k − θ‖2 + (ω̂k − ω)2

‖θ‖2 + ω2

versus k is shown in Fig. 1, and the actual signal s(t) and estimated signal ŝ(t) versus t are shown in Fig. 2.
From Table 1 and Figs. 1 and 2, we can draw the following conclusions.

1. The estimation error becomes small with the data length k increasing — see Table 1 and Fig. 1.
2. The estimated signal ŝ(t) can track the actual signal s(t) — see Fig. 2.
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Fig. 2. The actual signal s(t) and estimated signal ŝ(t) versus t .

6. Conclusions

In this paper, a gradient based algorithm and a least squares based algorithm are derived tomodel periodic signals from a
power system. According to the simulation with a distorted sinusoidal signal, the fundamental frequency and the harmonic
parameters can be accurately estimated with the hierarchical identification principle.
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