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My principal interest lies in studies strongly motivated by practical applications. I am
particularly attracted to interdisciplinary projects which require knowledge of many fields in
order to produce results that can be applied in real life.

My current research focuses on inverse problems for partial differential equations, in partic-
ular inverse acoustic and electromagnetic scattering theory. I have endeavored to uniqueness in
the inverse scattering problems. Now we give a brief description of my works I have done under
the supervision of Prof. Bo Zhang during my Ph.D. period. These works can be summarized in
two themes as follows:

• Unique determination of a ball by a finite number of far field data:
Since a ball is uniquely determined by its radius and center, it seems that only a finite
number of far field data is enough to identify the ball. Under the assumption that the
radius is small enough, we proved that a perfectly conducting ball is uniquely determined
by at most four far field data with a single incident direction and polarization in [11] and
the shape of a sound-soft ball is uniquely determined by the modulus of a single far field
datum measured at a fixed spot corresponding to a single incident plane wave in [22].

• Uniqueness results in inverse scattering problem in a piecewise homogeneous
medium:
Inverse scattering problem in a layered medium is a subject of great practical importance.
The main objective is to show that the penetrable interface between layers and the obstacle
with its properties can be uniquely determined by the far field patterns for incident plane
waves or near fields for point sources. We have established such uniqueness results with the
help of some generalized reciprocity relations in a series of papers [23, 24, 25, 26, 27, 28].

In what follows, I will describe each of these areas and also my future plans in details.

1 Unique determination of a ball by a finite number of far field
data

1.1 A brief description of inverse scattering problem

Broadly speaking, the scattering problems are concerned with the effect an inhomogeneity (scat-
terer) has on an incident (acoustic or electromagnetic) wave. In particular, if the total field is
viewed as the sum of an incident field ui and a scattered field us then the direct scattering
problem is to study the (far-field or near-field) behavior of us from a knowledge of ui and the
differential equation governing the wave motion. Of possibly even more interest is the inverse
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scattering problem of extracting the nature of the inhomogeneity from a knowledge of the (far-
field or near-field) behavior of us, i.e., to reconstruct the differential equation and/or its domain
of definition from the behavior of its solution(s). Here the governing PDE is scalar wave equa-
tion for acoustic scattering and Maxwell’s equations for electromagnetic scattering. Such inverse
problem has been playing an indispensable role in real life, and forms the basis of many areas of
science and engineering, such as radar and sonar (e.g., mine or submarine detection), geophysi-
cal exploration (e.g., oil and gas exploration), non-destructive testing (e.g., crack detection) and
medical imaging (e.g., breast cancer detection) [5, 12, 15].

The basic problem in classical scattering theory (as opposed to quantum scattering theory)
is the scattering of time-harmonic acoustic or electromagnetic waves by an inhomogeneity. In
the following, we take the inverse acoustic scattering by a sound-soft obstacle as an example for
illustration. The incident wave is given by the time-harmonic acoustic plane wave

ui(x, d) = eikx·d

where k = ω/c is the wave number, ω is the frequency, c is the speed of sound in the background
medium and d is the direction of propagation. The impenetrable obstacle D will be assumed
to be a compact set in Rn(n = 2, 3) with connected complement G = Rn\D, and the total field
will be expressed as the sum of the incident field and the scattered field. Then, the total wave
u = ui + us in G satisfies the reduced wave equation or Helmholtz equation

∆u + k2u = 0 in G. (1.1)

For a sound soft obstacle the pressure of the total wave vanishes on the boundary, so a Dirichlet
boundary condition

u = 0 on ∂D (1.2)

is imposed. In order to obtain the well-posedness of the direct problem, the scattered wave us(x)
is required to satisfy the Sommerfeld radiation condition

lim
r→∞ r

n−1
2 (

∂us

∂r
− ik0u

s) = 0 (1.3)

uniformly in all directions x/|x|, where r = |x|. Moreover, it is known that us(x) has the
following asymptotic representation

us(x, d) =
eik|x|

|x|n−1
2

{
u∞(x̂, d) + O(

1
|x|)

}
as |x| → ∞ (1.4)

uniformly for all directions x̂ := x/|x|, where the function u∞(x̂, d) defined on the unit sphere
Sn−1 is known as the far field pattern with x̂ and d denoting, respectively, the observation
direction and the incident direction.

Now, the direct problem, given information on the incident wave and the obstacle, is to find
such far field pattern. Whereas the inverse problem taking the reverse is to determine the shape
and location of the obstacle from the measurements of far field pattern.

As usual in most of the inverse problems, the first question to ask in this context is the
identifiability, that is, whether an obstacle can be identified from a knowledge of the far field
pattern. Mathematically, the identifiability is the uniqueness issue which is of theoretical interest
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and is required in order to proceed to efficient numerical methods of solutions. There is an
interesting and well-known conjecture as follows:

One incoming plane wave for one single direction and one single wave number
completely determines the scatterer (without any additional a priori information).

As it was remarked in [12] that this is a well-known question that supposedly can be solved
by elementary means. However, it has been open for thirty to forty years and there is no idea
how to attack it. There is much progress in this inverse problem, but more remains challengingly
unsolved (see [12, 29]).

1.2 Unique determination of a ball by at most four far field data

Explicit representations of the far field patterns are only available for sound-soft ball and sound-
hard ball. Based on Colton’s theorem [3], its proved that a ball is uniquely determined from the
far field pattern corresponding to a single incident direction by C. Liu [20] for sound-soft ball
and by K. Yun [34] for sound-hard ball. However, it is noted that a ball is uniquely determined
by its radius and center. Based on an investigation of the properties of the Bessel and Neumann
functions, H. Liu & J. Zou [21] proved that the radius R of the underlying ball (centered at
origin) is uniquely determined by the single far field datum. If the location, that is its center,
was not given as a prior information, three more measurement data must be added to uniquely
determine its center. In cooperation with Prof. Bo Zhang and Dr. Guanghui Hu, this has been
proved and extended to electromagnetic scattering in [11].

1.3 Unique determination of a sound-soft ball by the modulus of a single far
field datum

In practical applications it is not always the case that information about the full far field pattern
is known, but instead only its modulus might be given. Therefore, we are interested in the inverse
problem described as follows:

Given the modulus of the far field pattern |u∞|, for one single incident plane
wave ui, determine the boundary of the sound soft obstacle D.

For the shifted domain Dh := {x + h : x ∈ D} with h ∈ Rn a fixed unit vector, the far field
pattern u∞h satisfies the equality [18, 19]

u∞h (x̂) = eikh·(d−bx)u∞(x̂), (1.1)

that is, the modulus of the far field pattern is invariant under translation. Therefore only the
shape but not the location may be uniquely determined by the modulus of the far field pattern.
It was pointed out in [18] that it is a very difficult problem to obtain an analogue for the
Schiffer’s uniqueness result [5], since its proof heavily relies on the fact that, by Rellich’s lemma,
the far field pattern u∞ uniquely determines the scattered wave us. Also it was remarked
in [13], a corresponding result is not available for the modulus of the far field pattern, even
with the translation invariance taken into account. Recently, there are some efficient numerical
implementations [13, 14, 18] imply that shape reconstruction from the modulus of the far field
pattern is possible.

Collaborating with Prof. Bo Zhang, with the help of some ideas from Liu & Zou [21], I made
a first step in this direction. We proved that the shape of a sound-soft ball is uniquely determined
by the modulus of a single far field datum in [22]. We want remark is that all the results in
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[21, 11, 22] has restriction on the size of kR. A recent effort is to drop this restriction, extend
the result [22] to more general setting and to inverse electromagnetic scattering problems. We
have a conjecture that the modulus of the far field pattern is is strictly monotonically increasing
for the radius of the ball. Thus a lipschitz stability can be obtained.

2 Uniqueness results in inverse scattering problem in a piece-
wise homogeneous medium

This section provides brief descriptions of my main works I have done under the supervision of
Prof. Bo Zhang during my Ph.D. period.

2.1 The first kind of layered medium (see Fig. 1)

In practical applications, the background might not be homogeneous and then may be modeled
as a layered medium. A medium of this type that is a nested body consisting of a finite number
of homogeneous layers occurs in various areas of applications such as non-destructive testing,
biomedical imaging and geophysical explorations. In non-destructive testing, for example, the
conducting wire can be modeled in terms of an inhomogeneous impedance boundary condition
while the coating can be characterized as an arbitrarily shaped lossy dielectric layer.

Figure 1: Scattering in a two-layered background medium

For simplicity, and without loss of generality, we restrict our presentation to the case where
the obstacle is buried in a two-layered background medium in R3, as shown in Figure 1. In
particular let Ω2 ⊂ R3 be an open bounded region with a C2 boundary S1 such that the
background R3\Ω2 is divided by means of a closed C2 surface S0 into two connected domains Ω0

and Ω1. Here, Ω0 is the unbounded homogeneous media and Ω1 is the bounded homogeneous
media. We assume that the boundary S1 of the obstacle Ω2 has a dissection S1 = Γ0∪Γ1, where
Γ0 and Γ1 are two disjoint, relatively open subsets of S1. Furthermore, boundary conditions
of Dirichlet and impedance type with the surface impedance a nonnegative continuous function
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λ ∈ C(Γ1) are specified on Γ0 and Γ1, respectively. Note that the case Γ1 = ∅ corresponds to a
sound-soft obstacle, and the case Γ0 = ∅, λ = 0 leads to a Neumann boundary condition which
corresponds to a sound-hard obstacle.

Now the propagation of time-harmonic acoustic waves in a two-layered medium in R3 is
modeled by the Helmholtz equation with boundary conditions on the interface S0 and boundary
S1:

∆u + k2
0u = 0 in Ω0, (2.1)

∆v + k2
1v = 0 in Ω1, (2.2)

u− v = 0,
∂u

∂ν
− λ0

∂v

∂ν
= 0 on S0, (2.3)

B(v) = 0 on S1, (2.4)

lim
r→∞ r(

∂us

∂r
− ik0u

s) = 0 r = |x| (2.5)

where ν is the unit outward normal to the interface S0 and boundary S1, λ0 is a positive
constant. Here, the total field u = us + ui given as the sum of the unknown scattered wave us

which is required to satisfy the Sommerfeld radiation condition (2.5) and incident plane wave
ui = eik0x·d , kj is the positive wave number given by kj = ωj/cj in terms of the frequency ωj

and the sound speed cj in the corresponding region Ωj (j = 0, 1). The distinct wave numbers
kj (j = 0, 1) correspond to the fact that the background medium consists of several physically
different materials. On the interface S0, the so-called ”transmission condition” (2.3) is imposed,
which represents the continuity of the medium and equilibrium of the forces acting on it. The
boundary condition B(v) = 0 on S0 is understood as follows

v = 0 on Γ0, (2.6)
∂v

∂ν
+ iλv = 0 on Γ1. (2.7)

Thus, the boundary condition (2.4) is a general and realistic boundary allowing the pressure of
the total wave v vanishes on Γ0 and the normal velocity is proportional to the excess pressure
on the coated part Γ1.

The direct problem is looking for a pair of functions u ∈ C2(Ω0) ∩ C1,α(Ω0) and v ∈
C2(Ω1) ∩ C1,α(Ω1) satisfying (2.1)-(2.5). By the variational method, the well-posedness (ex-
istence, uniqueness and stability) of the direct problem has been studied by Athanasiadis and
Stratis [2] for Direchlet boundary condtion and by Liu, Zhang and Hu [27] for a general mixed
boundary condition (2.4). Recently, in cooperation with Prof. Bo Zhang[24], an integral equa-
tion method is employed to establish the well-posedness of the direct problem. The result is
then used, in conjunction with the representation in a combination of layer potentials of the
solution, to prove a priorii estimates of the solution on some part of the interface S0. The a
priori estimates will play an important role in the proof of the inverse problem.

Moreover, it is known that us(x) has the following asymptotic representation

us(x, d) =
eik0|x|

|x|
{

u∞(x̂, d) + O
( 1
|x|

)}
as |x| → ∞ (2.8)

uniformly for all directions x̂ := x/|x|, where the function u∞(x̂, d) defined on the unit sphere S
is known as the far field pattern with x̂ and d denoting, respectively, the observation direction
and the incident direction.
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The inverse problem we consider is, given the wave numbers kj (j = 0, 1), the positive
constant λ0 and the far field pattern u∞(x̂, d) for all incident plane waves with incident direction
d ∈ S, to determine the obstacle Ω2 with its physical property B and the interface S0.

However, to the authors’ knowledge, there are few uniqueness results for inverse obstacle
scattering in a piecewise homogeneous medium. In particular, for the case of the scattering
in a known piecewise homogeneous medium. Yan and Pang [33] gave a proof of uniqueness
of the sound-soft obstacle based on Schiffer’s idea. But their method can not be extended to
other boundary conditions. They also gave a result for the case of a sound-hard obstacle in a
two-layered background medium in [31] using a generalization of Schiffer’s method. However,
their method is hard to be extended to the case of a multilayered background medium and
seems unreasonable to require the interior wave number to be in an interval. Recently, based
on a generalization of the mixed reciprocity relation, we [27] showed that both the obstacle
Ω2 and its physical property B can be uniquely recovered from a knowledge of the far field
pattern for incident plane waves. This seems to be appropriate for a number of applications
where the physical nature of the obstacle is unknown. The tools and uniqueness result developed
in [27] can also be extended to inverse electromagnetic scattering problem [23]. For the case
of the scattering in an unknown piecewise homogeneous medium. Athanasiadis, Ramm and
Stratis [1] and Yan [32] proved that the interfaces between layers are determined uniquely by
the corresponding far field pattern which is a special case in the sense that the impenetrable
obstacle does not exist.

In [24], we have proved that both the inaccessible obstacle Ω2 with its physical property
B and the interface S0 can be uniquely determined by a knowledge of the far-field pattern.
The uniqueness result has also been extended to the scattering of an inhomogeneous penetrable
obstacle [25] and inverse electromagnetic scattering [26] in a piecewise homogeneous medium.
These results obtained in these paper are also available for the case of multilayered medium and
can be proved similarly.

2.2 The second kind of layered medium (see Fig. 2)

In practical applications, such as a mine buried in the soil, the domain surrounding the obstacle
(mine) consists of two half-spaces (air and soil) with different electromagnetic coefficients, sepa-
rated by a flat infinite interface. Moving an electronic device parallel to the flat infinite interface
to generate a time-harmonic field, the induced field is measured within the same device. The
goal is to retrieve information from these data to detect and identify buried obstacles. For more
information, especially on mine detection, the reader is referred to [7] and the many references
therein.

The inverse problem we consider is, taken measurements in the upper half-space Ω1, to
recover the obstacle D and its physical property. In recent years, many numerical reconstruction
methods have been proposed to solve the above inverse problem; see, e.g. the linear sampling
method proposed by Gebauer et al. [8] and by Cakoni, Fares and Haddar [6], an iterative method
proposed by Delbary et al. [7], and an asymptotic factorization method studied by Griesmaier
[9] and by Griesmaier and Hanke [10].

However, to our knowledge, no uniqueness result is available for the above inverse scattering
problem. In our recent paper [28], we have proved that both the obstacle and its physical
property can be uniquely determined from the measurements of the tangential component of
the electric fields on Σm corresponding to all incident electric dipoles with sources on Σi and
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Figure 2: Scattering from partially coated obstacles in a two-layered medium

two polarizations p = e1 := (1, 0, 0) and p = e2 := (0, 1, 0). The key ingredient of our proof is
a novel reciprocity relation established in [28] for the solutions of the scattering problem of the
electro dipole located at two different source points.

A recent effort is to the investigation of the numerical simulation and stability behavior of
the inverse process.

3 Conclusions

The inverse problems are the longest continuous subjects that I have been working since my
graduate study at Institute of Applied Mathematics, Chinese Academy of Sciences. These re-
search topics are not only interesting to me but have also provided me with valuable background
that I need as a mathematician. In studying these topics for a long time, I have been exposed
to a wide range of inverse problems.

During my Ph.D. study, I studied also many qualitative methods in inverse scattering theory
such as the Linear Sampling Method proposed by D. Colton & A. Kirsch, the Singular Source
Method developed by R. Potthast [30] and the Factorization Method studied by A. Kirsch [16].
Therefore, a recent effort is, with the help of some tools I have developed during the proof of
the uniqueness results, to make insightful investigation on numerically test.
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