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Glossary

Synchronization A problem in time-keeping, requiring
the coordination of events to operate a system or a task
in unison.

Distance A measure between two nodes, defined as the
number of edges connecting them through the shortest
paths.

Average distance The mean distance, averaged over all
pairs of nodes on the network.

Clustering coefficient The probability that two ran-
domly-selected neighboring nodes of a node are di-
rectly connected each other.

Node-degree The number of edges incident from a node.
Random-graph network A type of graph obtained by

starting with a set of nodes and then adding edges be-
tween them at random.

Small-world network A type of graph in which most
nodes are not neighbors of each other, but most nodes
can be reached from any other node by a small num-
ber of connection steps; thus, a small-world network
is highly clustered like a regular graph, and yet with
a small average distance, just like a random graph.

Scale-free network A type of graph in which a small
number of nodes have a large number of connections
while a large number of nodes have a small number of
connections, whose node-degree distribution typically
follows a power-law form, with both structure and dy-
namics being independent of the network size.

Node-betweenness A measure of the extent to which
a given node is occupied by the amount of information
passing through it via shortest paths between other
nodes, namely, the portion of shortest paths between
all pairs of nodes which have data traffic going through
this particular node in the network.

Definition of the Subject

The subject under consideration is synchronization on
complex networks, with respect to the phenomena and
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particularly the ability of achieving synchrony of a net-
work of dynamical systems. The subject of synchroniza-
tion is quite old, but it is a significant one continuously
calling for serious and systematic investigation. Ever since
the careful study of two synchronous pendulum clocks by
the great Dutch scientist Christian Huygens in 1665, the
subject has evolved to be an independent and indispens-
able field of scientific research. The current study of com-
plex networks, on the other hand, is pervading all kinds
of sciences, ranging from physical to biological, even to
social sciences. Its impact on modern engineering and
technology is prominent and will be far-reaching. Typi-
cal complex dynamical networks include the Internet, the
World Wide Web, various wireless communication net-
works, metabolic networks, biological neural networks,
social relationship networks, financial and economic net-
works, and so on. As it has turned out today, the study
of synchronization phenomena and synchronous behav-
iors of dynamical systems such as oscillators on complex
networks has become overwhelming. This article offers
an overview of the state-of-the-art advances and develop-
ments of the subject of synchronization on various com-
plex networks, with emphasis on network synchronizabil-
ity and performance.

Introduction

Many biological, social and technological systems can be
properly described by complex networks with nodes rep-
resenting individuals or organizations and edges charac-
terizing the interactions among them [1,2,3,4,5]. One of
the goals in the current studies on complex networks is
to understand and explain how the topological proper-
ties of a network affect the behaviors of dynamical sys-
tems built upon the network. Typical examples include
understanding how the topology of the Internet affects the
spread of the computer viruses [6,7,8,9,10], how the struc-
ture of a power grid affects the cascading failures over
time [11,12,13,14,15], how the connecting patterns of an
intercommunication network affect its data traffic and dy-
namics [16,17,18,19,20], and so on.

Synchronous behaviors have been observed in various
complex networks in nature and human society [23,24,
25,26], and they have been studied for hundreds of
years since the systematic investigation of pendulum syn-
chrony by the great Dutch scientist Christian Huygens in
1665 [27].

To understand how network structure affects the syn-
chronizability of a network not only has broad theoretical
interest [28], but also has important practical value [29].
One typical case in point is the synchronicity of sen-

sors in biological neural networks, where neurons com-
municate with each other through synaptic junctions for
which a mechanism called asynchronous release is impor-
tant [30]. There are many careful studies about collective
synchronization in the earlier literature, with a basic as-
sumption that dynamical systems of coupled oscillators
evolve either on regular networks [31,33,34] or on ran-
dom networks [35,36]. However, the structures of most
real-world networks are neither completely regular nor
completely random, but rather, somewhere in between.
Thus, it becomes important and even necessary to con-
sider how network structure affects the synchronization
process and the synchronizability of the dynamical sys-
tems on such networks. Recently, it has been found that
networks with small-world effects and scale-free proper-
ties are quite different from, and oftentimes achieve syn-
chronization more easily than, regular networks such as
lattices [37,38,39,40,41,42,43,44].

The study of synchronization on complex networks
has gone through several stages in the past decade, encom-
passing several important aspects of the subject: various
synchronization phenomena on complex networks and
their stability analysis, the relationships between struc-
tural ingredients and a network’s synchronizability, the
enhancement or reduction of network synchronizability,
etc. The first two are quite well understood today while
the last one will be further addressed in this article. First,
some basic concepts about synchronization of networked
dynamical systems and the associated stability analysis are
introduced. Second, some intrinsic relations between net-
work structure and synchronizability are discussed. Third,
three types of methods, namely, regulating coupling pat-
terns, modifying network structures, and designing output
functions, are introduced for enhancing network synchro-
nizability. Finally, some open questions are posed which
are deemed significant for further studies of the important
subject of complex network synchronization.

To proceed, some notations are introduced [5], among
which three are most significant with respect to net-
work synchronization: average distance L, clustering coef-
ficient C, node-degree ki of node i, and the corresponding
probability density function of degree distribution p(k).

In the past few years, by taking advantage of both high-
speed computing power and the huge amount of real data
available on the web, scientists were able to search and find
some common statistical characteristics shared by many
real-world networks. It is found that most real networks
have a very small average distance, scaled approximately as
L � lnN, where N is the size of the network (i. e., the to-
tal number of its nodes), while their clustering coefficient
is rather large, as compared with random-graph networks
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(Erdös and Rényi [28]). A network having both of these
two characteristics is referred to as a small-world network,
described by Watts and Strogatz [21]. Moreover, the de-
gree distributions of many real networks obey a power-
law form p(k) � k�� , where p(k) is the probability density
function for the corresponding degree distribution, and �
is the power-law exponent (typically 2 < � < 3) [1,2,3].
The power-law distribution falls off much more gradually
than an exponential one, allowing for a few nodes with
very large degrees to exist. Networks with power-law de-
gree distributions usually belong to the class of scale-free
networks, characterized by Barabási and Albert [22].

Basic Concepts of Network Synchronization

A general model of coupled identical oscillators on a net-
work can be described by [40,41]

ẋ i D F(x i) � �
NX

jD1

Gi jH(x j) ; i D 1; : : : ;N ; (1)

where ẋ i D F(x i ) governs the dynamics of the ith oscilla-
tor, with state vector x i ; H(x j) is the output function; �
is the coupling strength; G D [Gi j] is an N � N coupling
matrix determined by the given coupling pattern among
the N oscillators.

In the typical situation when the oscillators are sym-
metrically coupled, the coupling matrix G has the same
form as the graph Laplacian L, i. e., G D L, with

Li j D

8
<̂

:̂

ki for i D j
�1 for j 2 �i

0 otherwise ;
(2)

where ki is the degree of node i and �i is the set of its
neighboring nodes. In this setting, L is symmetrical and
semi-positive definite, and all the rows of L have a zero
sum, so that its smallest eigenvalue 1 is always a sin-
gle zero and all the other eigenvalues are strictly positive.
Thus, the eigenvalues of L can be ranked as

0 D 1 < 2 � 3 � � � � � N :

For network (1), the synchronization manifold is
an invariant manifold: x1 D x2 D � � � D xN D s, typically
satisfies ṡ D F(s) in engineering applications.

For a dynamical system, the so-called master stability
function is usually defined to be the ratio of the largest
Lyapunov exponent versus a connectivity parameter of the
system [42,45]. For some dynamical systems, the master
stability function is negative when 2 > ˛1/� for some

Synchronization Phenomena on Networks, Figure 1
Four typical master stability functions for coupled Rössler
oscillators: chaotic (bold curve) and periodic (regular curve);
with y-coupling (dashedcurve) and x-coupling (dottedcurve). The
vertical ordinate shows the changeof the largest Lyapunov expo-
nent. Curves are all scaled for clearer visualization (after [42])

constant ˛1. In this case, the largest Lyapunov exponent
is negative, and consequently the network is synchroniz-
able; moreover, the larger the 2 is, the better the network
synchronizability will be [40,41].

For some other dynamical systems, the master sta-
bility function is negative only within a finite interval
(˛1; ˛2) [46], over which the largest Lyapunov exponent
is negative [42,45], where ˛1 and ˛2 are constants. In
this case, the network is synchronizable for some � when
the eigenratio R D N /2 satisfies R < ˛2/˛1; moreover,
a smaller R indicates a better network synchronizability.

The former case corresponds to networks for which
the synchronized region is unbounded (the bold-dashed
curve in Fig. 1), and the latter, bounded (the bold-solid
curve and the two regular lines in Fig. 1) [42]. In both
cases, the right-hand side of the above two inequalities de-
pends only on the dynamics of each individual oscillator
and the output function of the network, while the eigen-
value 2 and eigenratio R depend only on the Laplacian L.
Therefore, the problem of synchronization can be divided
into two parts: choosing suitable dynamics (including the
aforementioned parameters and output function) and an-
alyzing the eigenvalues of the Laplacian. In fact, these two
cases can co-exist [32,101].

The same stability analysis can also be applied to some
more complicated coupling patterns [40,41,42,45,47], in-
cluding the case where G is non-diagonalizable (see Fig. 2
and [48]).

Network (1) has only identical oscillators, while in the
real world parameter mismatch between oscillators is very
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common, so that both the amplitudes and phases of dif-
ferent oscillators become different. However, quite often,
only the frequencies of oscillations are of concern in some
applications, while the amplitudes are not important. In
such cases, phase synchronization is the topic for study,
for which the Kuramoto model [49,50,51,52,53] is a repre-
sentative platform.

In the Kuramotomodel, oscillators run at arbitrary fre-
quencies and they are coupled through a periodic (e. g.,
sine) function of their phase differences. More precisely,
the model consists of a population of N coupled phase-
oscillators �i(t) having natural frequencies ! i distributed
with a given probability density g(!), governed by

�̇i D !i � �

NX

jD1

Gi j sin(�i � � j) ; i D 1; : : : ;N : (3)

To measure the synchronization phenomena, an order pa-
rameterM is introduced:

M �
hDˇ̌

N�1
PN

jD1e
i� j
ˇ̌Ei

; (4)

where � is a function of � , and h�i and [�] denote the
average over time and over different configurations, re-
spectively.

Initially, each node is assigned a random phase.
Without coupling, all the oscillators run independently
and, at any time, the phases of the oscillators are dis-
tributed almost uniformly on the interval [0; 2�], yielding
M D O(1/

p
N). In this situation, the oscillators are gen-

erally not synchronized. With coupling, as the coupling
strength gradually increases to beyond a certain threshold,
interactions among oscillators become stronger and more
inter-influential, which gradually dominate the individual
self-oscillations. Eventually, collective synchronization of
all oscillators emerges spontaneously. During this transi-
tion process, the order parameterM increases from 0 to 1.

Synchronizability Versus Structure

Previous studies have demonstrated that both scale-free
and small-world networks are much easier to synchro-
nize than regular lattices [37,38,39,40,41,42,43,44]. At this
point, a natural question arises: what makes them easier
to synchronize? An intuitive answer might be their aver-
age distance, which is much shorter than that of a regu-
lar network with the same size. However, after some sys-
tematic investigations on the relation between structural
ingredients and the network synchronizability, Nishikawa
et al. [54] found that as the network becomes more het-
erogeneous, i. e., the degree distribution becomes wider,

Synchronization Phenomena on Networks, Figure 2
Synchronization of scale-free networks. a, b the semi-random
model; c, d the growingmodel with aging of nodes. The small in-
sets are the responses of the indicated parameters with respect
to the changing parameters � or ˛ under the same conditions
(after [54])

a network can become less synchronizable even though
its average distance becomes much shorter. Figure 2 gives
two examples of this phenomenon. In a semi-random
model [55], with the increase of the power-law exponent � ,
which makes the network more homogeneous, the net-
work average distance D̄ becomes longer and the standard
deviation of the degree distribution reduces (Fig. 2a and
inset); meanwhile, the eigenratio N /2 of its Laplacian
becomes smaller (Fig. 2b), indicating improvement of the
network synchronizability. In a growing model of scale-
free networks with aging nodes [56], it is also observed
that as the average distance increases and the degree dis-
tribution becomes more homogeneous, the network gains
a better synchronizability (Fig. 2c,d).

A heuristic exploration may be given: in a network
with a heterogeneous degree distribution, a few “central”
oscillators, which interact with a large number of other
oscillators, tend to be overloaded by the traffic passing
through them. When too many independent traffic sig-
nals with different phases and frequencies are traversing
through a node at the same time, they cause congestion,
leading to the reduction of network synchronizability. The
same also happens to overloaded edges [54].

On the other hand, based on experience with WS
small-world networks, Hong et al. [57] concluded that the
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Synchronization Phenomena on Networks, Figure 3
Behavior of the difference ı of the eigenratio in a WS network
with rewiring probability p (after [57])

maximal node betweenness [58,59,60] is a good indicator
for network synchronizability: the smaller, the better, and
vice versa. To confirm their observation, they calculated
the difference of the eigenratio before and after the re-
moval of a node from aWSnetwork [21]. Figure 3 plots the
difference ı � (N /2)after � (N /2)befor. The reduction
of the ratio is brought about by the removal of the node
with the maximal betweenness (empty squares in the fig-
ure). In comparison, random removal of a node makes the
eigenratio almost unchanged (empty circles in the figure).
This implies that the node with the maximal betweenness
plays an important role in determining the synchroniz-
ability of the network. However, for scale-free networks,
this “maximal betweenness indicator” may not work, as
pointed out in [61] with a counterexample given in [62].

In the above studies, a network is usually modified in
order to see how the synchronizability changes as the net-
work structure varies. It is worth emphasizing that dur-
ing the modification process all the topological ingredi-
ents [5] have been changed at the same time, therefore it
is impossible to obtain any accurate relation between one
particular ingredient and the network synchronizability.
Knowing this problem, by using the edge-exchange oper-
ation [63,64], Zhao et al. [62] derived some fairly accu-
rate relations between the synchronizability and the av-
erage distance as well as the heterogeneity of the degree
distribution, on small-world and scale-free network mod-
els. Figure 4 presents a sketch of maps of their random
interchanging algorithms. The algorithmic operations will
change only the network average distance while keeping
the degree of each node unchanged. Thus, the relations be-
tween the two concerned ingredients can be investigated

Synchronization Phenomena on Networks, Figure 4
Sketch of maps of the random interchanging algorithm (af-
ter [62])

separately. Extensive simulations have verified that either
shortening the average distance or lowering the hetero-
geneity may lead to a better synchronizability, but only
their combination can always ensure that the network will
synchronize easily.

McGraw andMenzinger [65] investigated the relations
between the clustering coefficient and network synchro-
nizability, and concluded that for both random-graph and
scale-free networks, increasing the clustering coefficient
hinders global synchronization if the coupling strength
is strong, but it promotes the synchronization of scale-
free networks when the coupling strength is weak. Fig-
ure 5 shows this phenomenon. The main reason is that
the clusters around the hub-nodes promote the formation
of frequency-synchronized clusters, but they will inhibit
the synchronization of the network as a whole. The early
hub synchronization accounts for the slightly enhanced
order parameter when the coupling is weak [65,66]. This
analysis is based on non-identical oscillators in the Ku-
ramoto model. On the other hand, by means of master
stability analysis, Wu et al. [67] reported a negative corre-
lation between the clustering coefficient and synchroniz-
ability through a scale-free network model with a tunable
clustering coefficient [68].

Besides the main focus on small-world effects and
scale-free properties, as described by the clustering coeffi-
cient, average distance and degree distribution, some fur-
ther studies on the effects of other topological ingredients
on network synchronization have also been reported, par-
ticularly the degree-degree correlation. A network is said
to show assortative (or disassortative)mixing, if the nodes
having many connections tend to connect to other nodes
with many (or few) connections. The extent of this degree-
degree correlation can be measured by the Pearson coeffi-
cient [69]: its positive (or negative) value indicates assor-
tative (or disassortative) mixing. Di Bernardo et al. found
that disassortative networks generally have a better syn-
chronizability than the assortative ones [70,71]. However,
later works [72,73] show that the degree distribution, cou-
pling pattern, and degree-degree correlation among the
nodes compete with each other in an intrinsic manner,
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Synchronization Phenomena on Networks, Figure 5
Order parameter M vs coupling strength �, for different values
of the clustering coefficient � . a Poisson degree distribution.
b, c Power-law degree distribution. c A close-up of the transition
region, showing that increase of the clustering coefficient leads
to an advanced (lower-�) transition (after [65])

thereby together determining the network synchronizabil-
ity. That is, for one coupling pattern, disassortative mix-
ing may predict better synchronizability, while for another
coupling pattern, the result can be the opposite.

As we gain more knowledge of various network struc-
tures, more attention is paid to the effects of local struc-
tures of complex networks on their global behaviors and
dynamics. Huang et al. [74] found that in complex net-
works with prominent clusters, the synchronizability is de-
termined by the interplay between intercluster and intr-
acluster edges: a network is mostly synchronizable when
the numbers of the two types of edges are approximately
equal. If not equal, for example as the number of intra-
cluster edges increases, an abnormal synchronization phe-
nomenon appears: although the network average distance
becomes smaller, the network synchrony is weakened or
even destroyed.

Synchronization Phenomena on Networks, Figure 6
Order parameterM vs. community strength C for different values
of the coupling strength � (after [76])

Furthermore, the synchronization phenomenon of
a complex network with a community structure has also
been discussed. Qualitatively, a community is defined as
a subset of nodes within a network with the property that
the connections among the nodes therein are denser than
those within the other parts of the network [75]. Zhou
et al. studied phase synchronization in a network with
a community structure [76]. Defining the edges connect-
ing two nodes in one community as internal edges, and
those connecting nodes between two communities as ex-
ternal edges, the ratio of the number of external edges
to the number of internal edges can be used to charac-
terize the strength of the community structure, denoted
by C. Clearly, a smaller C corresponds to sparser external
edges thus a more prominent community structure. Fig-
ure 6 shows the relationship between the order parame-
terM and the community strengthC for different coupling
strengths � . It is found from Fig. 6 that a strong commu-
nity structure will hinder global synchronization no mat-
ter what the coupling strength is, but this effect will vanish
when the fraction of external connections exceeds 0.1.

Using a modified simulated annealing algorithm,
Donetti et al. [77] generated an entangled network with
optimal synchronizability. These kinds of networks are
shown to have an extremely homogeneous structure: dis-
tributions of node degrees, distances, betweenness, and
loops are all very uniform. Also, these networks are char-
acterized by short average distances and large loops, with
no well-defined community structures. In the approach
of [77], rewiring is applied, i. e., at each time step, the num-
ber of rewiring trials is randomly extracted from an ex-
ponential distribution. Except for rewiring which reduces
or increases the eigenratio, and except for operations that
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Synchronization Phenomena on Networks, Figure 7
Eigenratio Q as a function of the number of algorithmic iterations. Starting from different initial configurations, all the networks are
converted via iterations to entangled networks (after [77])

disconnect the network, for different initial configurations
the optimization process will always lead to the same op-
timal result. Figure 7 shows the changes of the eigenra-
tio in the optimizing process and the resultant network
configuration.

Enhancing Network Synchronizability

With a clearer understanding of the relations between the
network structure and synchronizability, a natural ques-
tion about how to enhance the network synchronizability
is in order. Some effective synchronizability-enhancement
methods are introduced in this section.

Coupling Pattern Regulation

In general, scale-free networks are much harder to syn-
chronize than random networks with the same size and
the same average degree. One reason is that in scale-free
networks, there are some “central” oscillators that interact
with a large number of other nodes [54]. Thus, when too
many independent signals with different phases and fre-
quencies are traversing through a “central” oscillator at the
same time they may have conflicts, thereby causing traffic
congestion. Hence, generally speaking, the more hetero-
geneous the degree distribution, the more difficult for the
network to synchronize. It is also known that in scale-free
networks, when the oscillators are coupled symmetrically,
oscillators with larger degrees usually approach the final
synchronized state first, and then the others with smaller
degrees synchronize to them gradually [65]. Therefore,
when the oscillators are coupled asymmetrically, if the
coupling strength from the “central” oscillators to the
other nodes are stronger than the reverse, the network will
synchronize much easier and faster.

Based on this idea,Motter, Zhou andKurths [78,79,80]
proposed a new coupling pattern, which we will call the

MZK pattern, which can sharply improve network syn-
chronizability. After that, quite a few methods for regu-
lating coupling patterns are brought forward to improve
network synchronizability, some static and some dynamic.

Static Coupling Patterns

In static coupling patterns, the elements of the coupling
matrix are formulated based on the MZK pattern, as

Gi j D Li j/k
ˇ
i ; (5)

where ˇ is a tunable parameter. The coupling is weighted
when ˇ ¤ 0, and unweighted when ˇ D 0. In spite of the
asymmetry of this coupling matrixG, it can be proved that
all the eigenvalues ofG are nonnegative reals with only one
eigenvalue being zero if the network is connected. Rewrite
Eq. (5) as

G D D�ˇ L ; (6)

where D D diag(k1; : : : ; kN ) is a diagonal matrix and L is
the Laplacian. From the identity

det(D�ˇ L � I) D det(D�ˇ /2LD�ˇ /2 � I) ; (7)

where I is the N � N identity matrix, one can prove that
the spectrum of G is the same as that of the following sym-
metric matrix:

H D D�ˇ /2LD�ˇ /2 : (8)

Similarly to the case of matrix G, if the network is con-
nected then all eigenvalues of H other than the single
1 D 0, are positive. With ˇ D 1, the matrix H is a nor-
malized Laplacian. Thus, if the network is connected and
N � 2, then

0 < 2 � N/(N � 1) ; 2 � N � N/(N � 1) : (9)
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Synchronization Phenomena on Networks, Figure 8
Eigenratio R as a function of ˇ for four kinds of complex networks specified in [78]. For each model, the synchronizability peaks at
ˇ D 1:0 (after [78])

Figure 8 shows the changes of the eigenratio Rwith the
parameter ˇ in four kinds of complex networks specified
in [78]. It can be seen that the eigenratio R has a well-de-
fined minimum at ˇ D 1 in all cases. Mathematically, this
means that the best results are obtained when the matrixD
has a square-root. It is also clear that the more heteroge-
neous the network is, the more prominent the minimum
of the eigenratio R becomes.

By explicitly relating the asymmetry in the connections
to an age order among different nodes, Hwang et al. [81]
found that age-ordered networks provide a better propen-
sity for synchronization. The main reason is that an older
node becomes weaker, therefore more easily influenced by
other nodes. In this coupling pattern, the off-diagonal en-
tries of the zero-row-sum coupling matrix G are

Gi j D �ai j
	i jP

j2�i
	i j

; (10)

where aij are the elements of the adjacency matrix A
(ai j D 1 if nodes i and j are connected, and ai j D 0 other-
wise), and	i j D (1 � �)/2 (or	i j D (1C �)/2) for i > j
(or i < j). The parameter � 2 (�1; 1) governs the cou-
pling asymmetry in the network: the limit � ! �1 (or
� ! 1) gives a unidirectional coupling, where the old (or

young) nodes drive the young (or old) ones. When � D 0,
the coupling pattern degenerates to the MZK pattern at
ˇ D 1.

For a generic � , the spectrum of the coupling ma-
trix G is in the complex plane and the complex eigen-
values appear in pairs of complex conjugates (1 D 0;
` D r

`
C ji

`
, ` D 2; : : : ;N). It can be proved that

(i) 0 < r2 � � � � � rN � 2, and (ii) ji
`
j � 1;8`. The

best propensity for synchronization is then ensured when
both the ratio rN /

r
`
and M � max`fji`jg are simultane-

ously made as small as possible.
In scale-free network models, the age of a node can

be denoted by the time when it is being added to the net-
work. The class of scale-free networks under study is gen-
erated from the Barabasí–Albert model [82,83]. For com-
parison, a highly homogeneous random network with an
arbitrary initial age ordering is considered, with the aver-
age degree being equal to that of the scale-free network.
Figure 9 shows the variation of the synchronizability of the
two networks versus the parameter � . For the random net-
work, symmetric coupling makes the ratio rN /

r
2 smallest,

while for the scale-free model, the propensity for synchro-
nization is better (or worse) when � ! �1 (or � ! 1).
As for M, there are only very small differences between
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Synchronization Phenomena on Networks, Figure 9
a �r

N and �r
2, b �

r
N/�

r
2, and c M, vs. � , for a scale-free network

(m D 5 and B D 0, solid curves) and random network (dashed
curves) (after [81])

the scale-free and the random-network models. Thus, it
is concluded that in scale-free networks, the network syn-
chronizability is enhanced when the dominant coupling
direction is from older to younger nodes [84].

Taking the edge-weights into account, Chavez et
al. [85,86] investigated the propensity for synchronization
of some weighted complex networks, where the weight in
an arbitrary edge, `i j , is defined as its traffic load [87],
which quantifies the traffic of shortest paths which make
use of that edge. In this coupling pattern, the off-diagonal
entries of the zero-row-sum coupling matrix G are

Gi j D �
`˛i jP
j2�i

`˛i j ; (11)

where ˛ is a tunable parameter, and `i j is the load of the
edge connecting nodes i and j.

Although G is asymmetric for all ˛, just like the MZK
pattern, it can be proved that all its eigenvalues are non-
negative reals with only one zero eigenvalue if the network
is connected. The case of ˛ D 0 corresponds to the best
synchronizability condition for the MZK pattern. From
Eq. (11), it can be seen that in the limit of ˛ D C1 (or
˛ D �1) only the edges with the largest (or smallest)
loads `i j are selected as the incoming edges for each node i.
Therefore, this generates a network with at leastN directed
edges, which can be either connected or disconnected. In
the connected (or disconnected) case, the ratio N /2 will
be equal to 2 (or C1), thus yielding a very strong (or
weak) condition for synchronization.

Figure 10a shows the logarithm ofN /2 in the param-
eter space (˛; B) for the above-discussed model [82,83].
Parameter B is used to regulate the heterogeneity of the

Synchronization Phenomena on Networks, Figure 10
a �N/�2 for scale-free networks vs. the parameter space (˛; B).
b � D log(�N/�2)� [log(�N/�2)]˛D0 vs. (˛; B). The domain
with� < 0 is outlined by the black contours drawn (after [85])

degree distribution. It can be observed that the surface
of N /2 has a prominent minimum when ˛ ' 1 for all
values of B above a given threshold Bc > 0, which means
that the weighting procedure based on edge loads always
enhances the network propensity for synchronization.
The quantity � D log(N /2) � [log(N /2)]˛D0 shown
in Fig. 10b may be used to quantify the synchronizability
enhancement.

The coupling patterns proposed by both Hwang et
al. [81] and Chavez et al. [85,86] can enhance the propen-
sity for network synchronization. The former works well
only for age-ordered networks, while the latter requires
the knowledge of the load on each edge of the whole net-
work. Therefore, a general coupling pattern using only lo-
cal information would be very desirable. Based on the idea
that different nodes should play different roles in a net-
work, Zhao et al. [73] proposed a coupling pattern which
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Synchronization Phenomena on Networks, Figure 11
a Eigenratio R in the parameter plane (˛, ˇ). b R vs.˛ for different values of parameterˇ (after [73])

requires only the degrees of neighboring nodes. The cou-
pling matrix G of this pattern is given by

Gi j D

8
<̂

:̂

�k˛j /S
ˇ
i for j 2 �i

Si /S
ˇ
i for i D j

0 otherwise ;

(12)

where Si D
P

j2�i
k˛j . When ˛ D ˇ D 0, this coupling

pattern degenerates to the symmetric coupling pat-
tern [45], where the case of ˛ D 0 corresponds to theMZK
pattern [78] and the case of ˇ D 1 is equivalent to the one
introduced in [80] (see Eq. (15) in [80] for more details).
Although this G is asymmetric for all ˛ with ˇ ¤ 0, it can
also be proved that all its eigenvalues are non-negative re-
als with only one zero eigenvalue, if the network is con-
nected. Figure 11 shows some simulation results. From the
figure, it can be concluded that there is always some pa-
rameter region in which the eigenratio R is smaller than
that of the symmetrically coupled case (˛ D ˇ D 0) and
that of the optimal case with the MZK pattern (˛ D 0 and
ˇ D 1).

From the viewpoint of gradient fields, Wang et al. [88]
also derived a coupling pattern that has the same configu-
ration as Eq. (12) with ˇ D 1.

Dynamic Coupling Patterns

The coupling patterns discussed above are all based on
a network having a fixed structure which remains un-
changed throughout the synchronizing process.

Zhou et al. [89] investigated synchronization in a scale-
free network of chaotic oscillators, where the coupling
strength of a node develops adaptively according to the
local synchronizing property between the node and its
neighbors. In this coupling pattern, the off-diagonal en-

tries of the zero-row-sum coupling matrix G are

Gi j D �ai jWi j ; (13)

where Wi j > 0 is the coupling strength from node j to
node i if they are connected. Here, suppose that the
strength between node i and all its ki neighbors increases
uniformly among the ki connections, in order to suppress
its difference �i from the mean activity of its neighbors;
namely,

Gi j(t) D �ai jVi (t) ; V̇i D ��i /(1C�i ) ; (14)

where �i D jH(x i) � (1/ki)
P

j ai jH(x j)j, and � > 0 is
the adaptation parameter. It is clear that, in this adap-
tive coupling scheme, the input weight (Wi j D Vi ) and the
output weight (Wji D Vj) of node i are generally asym-
metrical.

Next, synchronization of a network of coupled Rössler
oscillators and a chaotic foodweb model on Barabasí–
Albert scale-free networks are considered, and two cases of
unbounded and bounded stability zones are investigated,
respectively. When the stability zone is unbounded, the
transition to synchronization is shown in Fig. 12a. Start-
ing from random initial conditions on the chaotic attrac-
tors, the local synchronization difference �	 1, and the
input weights of each node, both increase uniformly on
the whole network, i. e., Wi j D Vi (t) � � t (Fig. 12a, in-
set). After a short period of time, the weights Vi of differ-
ent nodes develop at different rates and then converge to
different values Ṽi . The input weight is smaller on aver-
age for nodes with larger degrees ki (Fig. 12b). Here, the
synchronization error is measured by averaging all local
errors over the nodes: E(t) D hjx i � hx iiji.

The dependence of the input weight of a node on its
degree follows a power law,

V(k) � k�� ; (15)
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Synchronization Phenomena on Networks, Figure 12
a Transition to synchronization in an adaptive network of Rössler
oscillators, indicated by the (averaged) synchronization error
E(t) D hjxi � hxiiji. Inset: the input strength Vi(t) vs. time over
three nodes. b Theweighted couplingmatrix G̃ crystallized after
the adaptation (for the foodweb model) (after [89])

with exponent � D 0:48˙ 0:01 for both oscillator mod-
els. Importantly, this scaling is also robust to the varia-
tion of network parameters, such as the minimal degreeM
(Fig. 13b), which should not be confused with the order
parameter M elsewhere, the system size N (Fig. 13c), and
the orders of magnitudes of the adaptation parameter �
(Fig. 13d).

When the stability zone is bounded, synchroniza-
tion can always be achieved by the adaption mechanism
of Eq. (14) if � � �c for a threshold �c somewhat de-
pending on N and the oscillator dynamics. The two re-
sulting weighted networks display the same power-law
behavior as in Eq. (15), but with different exponents:
� D 0:54˙ 0:01 (Rössler oscillator) or � D 0:36˙ 0:01
(foodweb). The eigenratio R for the weighted networks, af-
ter the adaptation, and for the unweighted networks (sym-
metric coupling) is calculated as a function ofN (Fig. 14a),
and as a function of the ratio Smax/Smin (Fig. 14b), where
Smax and Smin are the maximum and minimum intensities
of the variable coupling strengths of the model. Clearly,
this adaptive coupling scheme is more effective than sym-
metric coupling for network synchronization.

Huang [90] investigated another adaptive coupling
pattern, in which a node is coupled with its neighbors

non-uniformly through different coupling strengths, and
showed that they have better synchronizability than other
networks with symmetric coupling patterns.

In all the coupling patterns discussed above, whether
the coupling pattern is static or dynamic, only the coupling
strength is tunable while the connectivity matrix always
remains unchanged. However, as is intuitively clear, net-
work synchronizability can also be significantly improved
by evolving the graph topology giving rise to a time-vary-
ing connectivity matrix. This has been recently confirmed
by Boccaletti et al. [91].

It has been shown [91] that to make a network syn-
chronizable, either the coupling matrix G(t) D G remains
unchanged, or if starting from an initial wiring condi-
tion G(0) D G0, the coupling matrix G(t) commutes at
any time with G0, i. e., G0G(t) D G(t)G0;8t. At any time,
a zero-row-sum symmetric commutingmatrixG(t) can be
constructed, as

G(t) D V�(t)VT ; (16)

where V D fv i ; : : : ; vNg is an orthogonal matrix with
columns being the eigenvectors of G0, and�(t) D diag[0;
2(t); : : : ; N (t)] with i (t) > 0;8i > 1. This set of ma-
trices is referred to as the dissipative commuting set of
G(0). A condition to ensure the network synchronization
will be stable is

Si D lim
T!1

1
T

Z T

0
�max(�i (t0))dt0 < 0 8i ¤ 1 ; (17)

where�max(�i ) is the maximal transversal (conditional)
Lyapunov exponent along the direction of the ith eigen-
vector, and Si is its time average. Hence, it does not re-
quire �max(�i (t)) < 0 at all times. One can even con-
struct a commutative evolution such that at each time
there exists one eigenvaluei for which�max(�i (t)) > 0,
and yet obtain a stable synchronization manifold. Thus,
interestingly, synchronization in a dynamical network
can be achieved even in the case where each individual
commutative graph does not give rise to synchronized
behavior.

Modifications of Network Structures

It is well known that the synchronizability of a dynami-
cal network is determined simultaneously by the network
coupling pattern, the dynamical characteristics of the os-
cillators on its nodes, and the network structure. In the
above, several cases with variable coupling patterns have
been discussed. For some real-world networks, however,
the coupling pattern cannot be modified at will. Thus, if
the dynamics of the oscillators are given and fixed, and



Synchronization Phenomena on Networks S 8921

Synchronization Phenomena on Networks, Figure 13
Average input weight V(k) of nodes with degree k as a function of k for a network of Rössler oscillators (empty circles) and the food-
web model (filled circles) (a), and its dependence on various parameters,M (b), N (c), and � (d), where theM should not be confused
with the order parameterM elsewhere (after [89])

Synchronization Phenomena on Networks, Figure 14
Eigenratio R as a function of N (a), and Smax/Smin (b). The networks are synchronizable if R < R� in a, Rössler oscillators (squares),
R� D 40 (dashed curve), foodwebmodel (triangles), R� D 29 (dashed-dotted curve) (after [89])

if the coupling patterns cannot be changed, then the only
way to enhance the network synchronizability is to make
a change to the network structure.

There are some effective techniques to enhance the
network synchronizability by modifying the network
structure, as further discussed below in the rest of this
section.

Reducing Maximal Betweenness

In scale-free networks, the average distance is often very
short while the node-degree and node-betweenness distri-
butions are both quite broad. The bottleneck for the net-
work synchronizability seems to be the maximal node be-
tweenness [57]. In order to reduce the node betweenness
of the hubs, Zhao et al. [92] suggested a method of struc-

tural perturbations. Specifically, for a hub x0, m � 1 aux-
iliary nodes, labeled as x1; : : : ; xm�1, are added around
it. These m nodes are fully connected together. Then, all
the edges incident from x0 are re-distributed to all the
nodes xi (including x0 itself), i D 0; 1; : : : ;m � 1. After
this process, the betweenness of x0 is divided intom almost
equal parts associating with thesem nodes. This process is
calledm-division. A sketch map of a 3-division process on
node x0 is shown in Fig. 15.

Due to the huge sizes of many real-life networks,
it is usually impossible to obtain the node between-
ness from a complex network. Fortunately, studies have
shown that there exists a strongly positive correlation
between the node-degree and the node-betweenness in
Barabasí–Albert networks and some other heterogeneous
networks [87,93]. That is, a node with larger degree has
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Synchronization Phenomena on Networks, Figure 15
Sketch map for the 3-division process on x0. The solid circle on
the left is the node x0 with degree 6. After the 3-division process,
this x0 is divided into 3 nodes, x0, x1 and x2, which are fully con-
nected. The six edges incident from x0 are then re-distributed to
all the three nodes (after [92])

higher node-betweenness statistically. Therefore, for prac-
tical reasons, it can be assumed that nodes with higher be-
tweenness are those with larger degrees in Barabasí–Albert
networks.

To further explore how the structural perturbations af-
fect the network synchronizability, the eigenratios before
and after the m-division process were compared in [92]
for a Barabasí–Albert scale-free network with the coupling
matrix being Laplacian. For use in the rest of the article, we
define a characteristic value R D r0/r, in which r and r0 are
the eigenratios before and after the division, respectively.
Figure 16 shows the correlation between R and the proba-
bility � of the divided nodes. It is clear that even them-di-
vision of a tiny fraction of nodes can sharply enhance net-
work synchronizability.

Synchronization Phenomena on Networks, Figure 16
Behavior of value R vs. the fraction of divided nodes �. As the
number of divided nodes increases, R is reduced, leading to bet-
ter synchronization (after [92])

Shortening the Average Distance

Zhou et al. [94] investigated the synchronizability of a net-
workmodel named crossed double cycles (CDCs). They not
only clarified the relationship between average distance
and network synchronizability, but also provided a pos-
sible way to make a network more synchronizable.

In the language of graph theory [95,96,97], a cycle CN
denotes a network consisting of N nodes (vertices) x1;
: : : ; xN . These N nodes are arranged in a ring, and the
nearest two nodes are connected to each other. Thus,
CN has N edges connecting the nodes x1x2; x2x3; : : : ;
xN�1xN ; xNx1. The set of all such CDCs, denoted by
G(N;m), can be constructed by adding two edges, called
crossed edges, to each node in CN . The two nodes con-
necting by a crossed edge have distance m within CN .
For example, the network G(N; 3) can be constructed
from CN by connecting x1x4; x2x5; : : : ; xN�1x2; xNx3 to-
gether. A sketch map of G(20; 4) is shown in Fig. 17 for
illustration.

Figure 18 shows how the average distance L affects the
network synchronizability (measured by the characteris-
tic value R). It is clear that the network synchronizability
is very sensitive to the average distance: as L increases, R
sharply spans more than three magnitudes. And the net-
work synchronizability is remarkably enhanced by reduc-
ing L. When the crossed length m is not too small or too
large (compared to N), networks with the same average
distance have approximately the same synchronizability,

Synchronization Phenomena on Networks, Figure 17
Sketch map of G(20;4) (after [94])
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Synchronization Phenomena on Networks, Figure 18
Characteristic value R vs. average distance L of CDCs. The black
squares, red circles, blue triangles and green pentagons represent
the cases of N D 1000, 2000, 3000 and 4000, respectively. The
inset shows the same data in log-log plot, indicating that the
characteristic value R approximately obeys a power-law form
R � L1:5. The solid line has slope 1.5, for comparison (after [94])

regardless of the network sizes. More interestingly, the nu-
merical results show that the characteristic value R ap-
proximately obeys a power-law form, as R � L1:5 (inset of
Fig. 18).

Decoupling Nodes by Removing Heavily-Loaded Edges

In the synchronization process, not only hubs may be the
bottlenecks but some edges with large loads may also limit
the network synchronizability. Yin et al. [99] found that
a scale-free network can become more synchronizable af-
ter some of its heavily-loaded edges have been removed.
To reduce the computational cost, they used local infor-
mation to approximately rank the edges, according to the
values of ki � k j , where i and j denote two adjacent nodes
connected by an edge. Subsequently, at each time step, an
edge with the highest rank is removed, i. e., the two nodes
are decoupled at both sides of their connecting heavily-
loaded edge. After this operation, the characteristic value
is decreased, as shown by Fig. 19.

Designing the Output Function

Very recently, the relationship between graph theory
and network synchronizability received some special at-
tention [100]. For example, Duan et al. [101,102,103]
found that for networks with disconnected complemen-
tary graphs, adding edges will often increase their synchro-
nizability. The complementary graph of a given graph G is

Synchronization Phenomena on Networks, Figure 19
Changes of the synchronizability as a function of the proportion
of cut edges Ncut/N for different values of the average distance
(after [99])

defined to be the graph consisting of all the nodes of G and
all the edges that are not in G.

In addition, they found [101,102] that when the
couplings between nodes are symmetric, an unbounded
synchronized region is always easier to analyze than
a bounded synchronized region (see Sect. “Basic Concepts
of Network Synchronization” to recall their definitions).
Therefore, to effectively enhance network synchronizabil-
ity, they presented a designmethod for the output function
(i. e., H in network (1), or the inner linking matrix in the
linear coupling case), such that the resultant network has
an unbounded synchronized region, for the case where the
synchronous state is an equilibrium of the network.

If the synchronous state is an equilibrium, then both
DF(s(t)) and DH(s(t)) in network (1), as discussed in
Sect. “Enhancing Network Synchronizability” (part B), re-
duce to constant matrices, denoted by F and H, respec-
tively. The synchronized region is the stability region of
the matric pencil F C ˛H with respect to parameter ˛.
It can be proved that there exists a matrix H of rank 1
(meaning that only one component in each state vector
is used for coupling), such that the stability region is un-
bounded. The method for obtaining the desired output
function is outlined below: first, take a column vector b
such that (F; b) is stabilizable [104]; then, find a matrix
P D PT such that FPC PFT � 2bbT < 0; consequently,
taking k D bTP�1 leads to the stability of F � ˛bk for all ˛
in the unbounded region; finally, H D bk is the matrix to
be found.

For illustration, synchronization of a simple 6-node
network (shown in Fig. 20) is studied, where each node
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Synchronization Phenomena on Networks, Figure 20
A network of 6 nodes (after [101])

is located with a third-order smooth Chua’s circuit [105].
At first, arbitrarily take the output function

H D

0

@
0:8348
0:1002
�0:3254

9:6619
0:0694
�8:5837

2:6591
0:1005
�0:9042

1

A : (18)

But the network does not synchronize. The states of node
1 are shown in Fig. 21a. Then, let b D (0; 0; 1)T and
k D (0:0708;�0:15590; 0:4296), and then set H D bk, so
synchronization is achieved as guaranteed by the theory.
Figure 21b shows that the states of node 1 quickly reach
the equilibrium.

Future Research Outlook

Complex network synchronization is a rapidly growing
subject attracting increasing attention from various fields
of physics, engineering, mathematics, and biology alike.
Despite the current great advances and progress, there are
still many important open questions.

In the studies of static coupling, Nishikawa and Mot-
ter [48] once pointed out that optimal global synchro-

Synchronization Phenomena on Networks, Figure 21
States of node 1 (after [101])

nizability, with eigenratio being equal to 1, can be ob-
tained from a directed network structure without loops.
Even if adding one loop of length 2 (in a directed net-
work, two opposite edges between node i and node j can
be considered as a loop of length 2), the eigenratio will be
doubled [73,85]. Another scenario is shown by extending
the conclusion in [48] to the case of non-identical oscil-
lators [106]. Some further works in this direction will be
helpful for in-depth understanding about the role of loops
in network synchronization.

In the studies of dynamic coupling, the cost of cou-
pling has not been taken into account. However, cost is
usually very significant in some self-driven systems (for
example, in wireless sensor networks [107,108] and in
distributed autonomous robotic systems [109]). For each
node to report its current state to the neighbors (or to
detect the states of all its neighbors) requires a certain
amount of power, while the total power assigned to each
node is often limited, even if such communications are
possible. Yet, as found in collective behaviors of biologi-
cal swarms, a few effective leaders can well organize the
whole population [110]. And a recent study has pointed
out that partial coupling is more than enough to keep the
coherence of self-propelled particles [111]. Therefore, it is
very natural to expect to synchronize a complex network
with a very low cost, which is an important issue for fur-
ther investigation.

Very recently, there are some attempts at detecting
the network structures with the help of the synchroniza-
tion phenomenon on complex networks [112,113,114]: to
discover the hierarchical community structure by the dy-
namic time scales of the network synchronization pro-
cess [112,113], or to infer the complete connectivity of
a network from its stable response dynamics [114], etc.
These seemquite useful for optimal network design, analy-
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sis, and utilization in general, therefore should be pursued
with special efforts.

Similar to the aforementioned open questions, many
theoretically attractive and practically important problems
about various aspects of synchronization on complex net-
works can be posted and described. As the network re-
search further evolves in different fields, many new dy-
namical phenomena and analytic issues will also emerge.
Importance notwithstanding, the subject of “Synchroniza-
tion Phenomenon of Networks” will continue to prove it-
self an theoretically interesting and technically challenging
subject for scientific research in the years to come.
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32. Stefański A, Perlikowski P, Kapitaniak T (2007) Phys Rev E

75:016210
33. Wu CW, Chua LO (1995) IEEE Trans Circuits Syst I 42:430
34. Jost J, Joy MP (2001) Phys Rev E 65:016201
35. Gade PM (1996) Phys Rev E 54:64
36. Manrubia SC, Mikhailov AS (1999) Phys Rev E 60:1579
37. Gade PM, Hu CK (1999) Phys Rev E 60:4966
38. Gade PM, Hu CK (2000) Phys Rev E 62:6409
39. Lago-Fernández LF, Huerta R, Corbacho F, Sigüenza JA (2000)

Phys Rev Lett 84:2758
40. WangXF, ChenG (2002) Int J Bifurc Chaos Appl Sci Eng 12:187
41. Wang XF, Chen G (2002) IEEE Trans Circuits Syst I 49:54
42. Barahona M, Pecora LM (2002) Phys Rev Lett 89:054101
43. Jiang PQ, Wang BH, Bu SL, Xia QH, Luo XS (2004) Int J Mod

Phys B 18:2674
44. Lind PG, Gallas JAC, HerrmannHJ (2004) Phys Rev E 70:056207
45. Pecora LM, Carrol TL (1998) Phys Rev Lett 80:2109
46. Hu G, Yang J, Liu W (1998) Phys Rev E 58:4440
47. Pecora LM, Barahona M (2005) Chaos Complex Lett 1:61
48. Nishikawa T, Motter AE (2006) Phys Rev E 73:065106
49. Kuramoto Y (1975) In: Araki H (ed) Internaltional Symposium

on Mathematical Problems in Theoretical Physics. Lecture
Notes in Physics, vol 30. Springer, New York

50. Kuramoto Y (1984) Chemical Oscillations, Wave and Turbu-
lence. Springer, Berlin

51. Kuramoto Y, Nishikawa I (1987) J Stat Phys 49:569
52. Pikovsky A (2001) Synchronization. Cambridge University

Press, Cambridge
53. Acebrón JA, Bonilla LL, Vicente CJP, Ritort F, Spigler R (2005)

Rev Mod Phys 77:137
54. Nishikawa T, Motter AE, Lai YC, Hoppensteadt FC (2003) Phys

Rev Lett 91:014101
55. Newman MEJ, Strogatz SH, Watts DJ (2001) Phys Rev E

64:026118
56. Dorogovtsev SN, Mendes JFF (2000) Phys Rev E 62:1842
57. Hong H, Kim BJ, Choi MY, Park H (2004) Phys Rev E 69:067105
58. Freeman L (1979) Soc Netw 1:215
59. Newman MEJ (2001) Phys Rev E 64:016132
60. Zhou T, Liu JG, Wang BH (2006) Chin Phys Lett 23:2327
61. Fan ZP (2006) Complex Networks: From Topology to Dynam-

ics. PhD Thesis, City University of Hong Kong
62. ZhaoM, Zhou T,WangBH, YanG, YangHJ, BaiWJ (2006) Phys-

ica A 371:773
63. Maslv S, Sneppen K (2002) Science 296:910
64. Kim BJ (2004) Phys Rev E 69:045101(R)
65. McGraw PN, Menzinger M (2005) Phys Rev E 72:015101
66. Gómez-Gardeñes J, Moreno Y, Arenas A (2007) Phys Rev Lett

98:034101



8926 S Synergetics: Basic Concepts

67. Wu X, Wang BH, Zhou T, Wang WX, Zhao M, Yang HJ (2006)
Chin Phys Lett 23:1046

68. Holme P, Kim BJ (2002) Phys Rev E 65: 026107
69. Newman MEJ (2002) Phys Rev Lett 89:208701
70. di Bernardo M, Garofalo F, Sorrentino F (2007) Int J Bifurc

Chaos 17:3499
71. Sorrentino F, di Bernardo M, Cuéllar GH, Boccaletti S (2006)

Physica D 224:123
72. Chavez M, Hwang DU, Martinerie J, Boccaletti S (2006) Phys

Rev E 74:066107
73. Zhao M, Zhou T, Wang BH, Ou Q, Ren J (2006) Eru Phys J B

53:375
74. Huang L, Park K, Lai YC, Yang L, Yang K (2006) Phys Rev Lett

97:164101
75. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004)

Proc Natl Acad Sci USA 101:2658
76. Zhou T, Zhao M, Chen G, Yan G, Wang BH (2007) Phys Lett A

368:431
77. Donetti L, Hurtado PI, Muñoz MA (2005) Phys Rev Lett

95:188701
78. Motter AE, Zhou C, Kurths J (2005) Phys Rev E 71:016116
79. Motter AE, Zhou C, Kurths J (2005) Europhys Lett 69:334
80. Motter AE, Zhou C, Kurths J (2005) AIP Conf Proc 776:201
81. Hwang DU, Chavez M, Amann A, Boccaletti S (2005) Phys Rev

Lett 94:138701
82. Dorogovtsev SN, Mendes JFF, Samukhin AN (2000) Phys Rev

Lett 85:4633
83. Krapivsky PL, Redner S (2001) Phys Rev E 63:066123
84. Zou Y, Zhu J, Chen G (2006) Phys Rev E 74:046107
85. Chavez M, Hwang DU, Amann A, Hentschel HGE, Boccaletti S

(2005) Phys Rev Lett 94:218701
86. Chavez M, Hwang DU, Amann A, Boccaletti S (2006) Chaos

16:015106
87. Goh KI, Kahng B, Kim D (2001) Phys Rev Lett 87:278701
88. Wang X, Lai YC, Lai CH (2007) Phys Rev E 75:056205
89. Zhou C, Kurths J (2006) Phys Rev Lett 96:164102
90. Huang D (2006) Phys Rev E 74:046208
91. Boccaletti S, Hwang DU, ChavezM, Amann A, Kurths J, Pecora

LM (2006) Phys Rev E 74:016102
92. Zhao M, Zhou T, Wang BH, Wang WX (2005) Phys Rev E

72:057102
93. Barthélemy M (2004) Eur Phys J B 38:163
94. Zhou T, Zhao M, Wang BH (2006) Phys Rev E 73:037101
95. Bondy JA, Murty USR (1976) Graph Theory with Applications.

MacMillan, London
96. Bollobás B (1998) Modern Graph Theory. Springer, New York
97. Xu JM (2003) Theory and Application of Graphs. Kluwer, Dor-

drecht
98. Newman MEJ, Watts DJ (1999) Phys Rev E 60:7332
99. Yin CY, Wang WX, Chen G, Wang BH (2006) Phys Rev E

74:047102
100. Comellas F, Gago S (2007) J Phys A Math Theor 40:4483
101. Duan Z, Chen G, Huang L (2007) Phys Rev E 76:056103
102. Duan Z, Chen G, Huang L (2007) Phys Lett A 372:3741
103. Duan Z, Liu C, Chen G (2008) Physica D 237:1006
104. Friedland B (1986) Control System Design. McGraw-Hill,

New York
105. Tsuneda A (2005) Int J Bifurc Chaos 15:1
106. Um J, Han SG, Kim BJ, Lee SI (2008) (unpublished)
107. Akyildiz IF, Su W, Sankarasubramaniam Y, Cayirci E (2002)

Comput Netw 38:393

108. Oqren P, Fiorelli E, Leonard NE (2004) IEEE Trans Automat
Contr 49:1292

109. Arai T, Pagello E, Parker LE (2002) IEEE Trans Robot Automat
18:655

110. Couzin LD, Krause J, Franks NR, Levin SA (2005) Nature
433:513

111. Zhang HT, ChenM, Zhou T (2007) arXiv:0707.3402
112. Arenas A, Díaz-Guilera A, Pérez-Vicente CJ (2006) Phys Rev

Lett 96:114102
113. Boccaletti S, Ivanchenko M, Latora V, Pluchino A, Rapisarda A

(2007) Phys Rev E 75:045102(R)
114. TimmeM (2007) Phys Rev Lett 98:224101

Synergetics: Basic Concepts
HERMANN HAKEN
Institut für Theoretische Physik, Universität Stuttgart,
Stuttgart, Germany

Article Outline

Glossary
The Role of Synergetics in Science
The Laser Paradigm
The Hierarchical Structure of Synergetics
Basic Equations
Method of Solution
Quantum Theoretical Formulation
Regular Spatial and Spatio-Temporal Patterns
A Further Mathematical Tool: Shannon Information

and the Maximum (Information) Entropy Principle
Phenomenological Synergetics
Semantic Synergetics
Some Selected Examples
History and Relations to Other Fields
Future Directions
Bibliography

Glossary

Synergetics Science of cooperation.
Pattern A pattern is essentially an arrangement. It is char-

acterized by the order of the elements of which it is
made rather than by the intrinsic nature of these ele-
ments (Norbert Wiener).

Self-organization Formation of spatio-temporal patterns
(structures) and/or performance of functions without
an “ordering hand”.

State vector Set of time- or time-independent variables
that characterize the state of a system.

Evolution equations Determine the temporal evolution
of the state vector. May be deterministic, stochastic or
both.
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