
Neural Networks to Simulate Regional Ground Water
Levels Affected by Human Activities
by Shaoyuan Feng1, Shaozhong Kang1, Zailin Huo2, Shaojun Chen1, and Xiaomin Mao1

Abstract
In arid regions, human activities like agriculture and industry often require large ground water extractions.

Under these circumstances, appropriate ground water management policies are essential for preventing aquifer
overdraft, and thereby protecting critical ecologic and economic objectives. Identification of such policies requires
accurate simulation capability of the ground water system in response to hydrological, meteorological, and human
factors. In this research, artificial neural networks (ANNs) were developed and applied to investigate the effects
of these factors on ground water levels in the Minqin oasis, located in the lower reach of Shiyang River Basin, in
Northwest China. Using data spanning 1980 through 1997, two ANNs were developed to model and simulate
dynamic ground water levels for the two subregions of Xinhe and Xiqu. The ANN models achieved high predic-
tive accuracy, validating to 0.37 m or less mean absolute error. Sensitivity analyses were conducted with the mod-
els demonstrating that agricultural ground water extraction for irrigation is the predominant factor responsible for
declining ground water levels exacerbated by a reduction in regional surface water inflows. ANN simulations
indicate that it is necessary to reduce the size of the irrigation area to mitigate ground water level declines in the
oasis. Unlike previous research, this study demonstrates that ANN modeling can capture important temporally
and spatially distributed human factors like agricultural practices and water extraction patterns on a regional basin
(or subbasin) scale, providing both high-accuracy prediction capability and enhanced understanding of the critical
factors influencing regional ground water conditions.

Introduction
In China, a huge country with a population of more

than 1.3 billion, half of its land is situated within arid or
semiarid regions of which 26.6% has an average pre-
cipitation of less than 200 mm/year (Tang and Zhang
2001). Ground water plays an important role in the eco-
nomic development and ecological balance in these arid
and semiarid areas, particularly in Northwest China (Cui
and Shao 2005). Over the past several decades, human
activities such as ground water extraction for irrigation
have resulted in aquifer overdraft in these areas,

disrupting the natural equilibrium of these systems (Hu
et al. 2002). Excessive ground water level declines have
produced serious ecological problems such as land desert-
ification and soil salinization, displacing inhabitants from
their ancestral homeland (New York Times 2006).

Currently in China, there is 150 3 103 km2 of desert
area, which is increasing at an annual rate of approxi-
mately 2000 to 3000 km2/year. The saline areas produced
by irrigation with the highly mineralized deep ground
water encompass roughly 2 million hectares, which
occupy approximately one-third of the country’s total
saline area (Qiu et al. 1998). Because of these severe con-
sequences and recognizing China’s growing reliance on
increasingly scarce ground water resources, it has become
extremely important to accurately simulate and predict
potential ground water level changes in these regions so
that appropriate water resources management and envi-
ronmental protection policies can be developed and
implemented.

A number of previous researchers focused on the
impact of human activities on ground water systems in
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arid and semiarid areas, leading them to conclude that
overexploitation of these systems has produced excessive
ground water level declines (IAHS 2001; Fan et al. 2001;
Horton 2001; Kang et al. 2004; Cui and Shao 2005; Ma
et al. 2005; Wang et al. 2002). However, these studies
have analyzed only the relationships between ground
water levels and human activities on a qualitative level.
Others have used advanced numerical models to simulate
and quantify the impact of human activities (e.g., ground
water extraction) on ground water conditions (Ma et al.
2002, 2003).

Numerical simulation models had been used success-
fully for simulating and predicting ground water levels
for many years, extending back into the 1960s. As noted
by Coppola et al. (2003b), ‘‘The power of these models is
they can capture high spatial and temporal variability of
aquifer properties and conditions inherent to natural hy-
drogeologic systems. However, this capability renders
numerical models data intensive, and to achieve accept-
able simulation and prediction performance, the proper-
ties and conditions of the ground water system must be
accurately represented within the model’s space and time
domains. The unavoidable discrepancies between the
model and the real world system inevitably produce simu-
lation and prediction error.’’ Because the properties and
conditions of the ground water system can never be as-
certained with absolute accuracy, empirical models may
provide an appropriate alternative method and can
provide useful results without costly calibration time
(Daliakopoulos et al. 2005).

The artificial neural network (ANN) methodology is
an alternative modeling and simulation tool, especially
for dynamic nonlinear systems. One of the most impor-
tant features of ANN models is their ability to adapt to
recurrent changes and detect patterns in a complex natu-
ral system. As Coppola et al. (2003b) discussed, unlike
traditional physical-based numerical models, ANNs often
do not require explicit characterization and quantification
of physical properties and conditions and are not based
upon simplifying mathematical and physical assumptions
(e.g., porous media). Rather, ANNs learn the system
behavior of interest from representative data that often
consist of easily measurable variables.

The advantages and disadvantages of ANNs over
conventional simulation methods have been discussed in
detail by French et al. (1992). In hydrology, ANNs have
been largely applied to the rainfall-runoff modeling, pre-
cipitation forecasting, and water quality modeling (ASCE
Task Committee on Application of Artificial Neural Net-
works in Hydrology 2000a, 2000b; Coulibaly et al. 1999;
Govindaraju and Ramachandra Rao 2000; Maier and
Dandy 2000). ANNs have also been applied successfully
to ground water level prediction under variable weather
conditions (Coulibaly et al. 2001; Mao et al. 2002) and
under pumping conditions without explicitly accounting
for this variable (Daliakopoulos et al. 2005; Lallahem
et al. 2005). Coppola et al. (2003a, 2003b, 2005b) devel-
oped ANN models that accurately predicted transient
ground water levels in response to variable weather and
pumping conditions and extended this work to water qual-
ity for an upconing problem in a coastal aquifer (Coppola

et al. 2005a). Some ANN ground water prediction mod-
els have been used for ground water management, where
the models are combined with formal optimization
methodology (Rao et al. 2003; Coppola et al. 2003a,
2007). This body of research collectively demonstrates
that ANN models may serve as efficient and accurate
models for simulating ground water systems and can
be used for developing effective management and pro-
tection strategies.

In this study, ANNs were developed to predict aver-
age ground water levels in a semiarid region using
monthly stress periods, with predictor input variables ad-
dressing meteorological, hydrological, population, and
agricultural ground water extractions. Therefore, unlike
previous studies by others like Coulibaly et al. (2001) and
Coppola et al. (2003a, 2003b, 2005b), this article demon-
strates that important and numerous ground water ex-
tractions that are temporally and spatially distributed over
a large regional-scale system can be accounted for by an
ANN, with their corresponding effect on the system accu-
rately predicted by the model. The ANN models were
used to perform valuable sensitivity analyses, identifying
the relative importance of different factors on the regional
ground water system. In addition, the models were used
to perform extended simulations over hypothetical 1-year
periods, using different sets of input values, to assess the
impacts of agricultural activities on the ground water sys-
tem. This modeling simulation and analysis helped quan-
tify average expected ground water level responses to
different levels of agricultural activities, which can be
used to help develop appropriate long-term strategies to
promote the long-termed sustainability of the resource
and the surrounding environment.

Study Area Description
The Minqin oasis, encompassing an area of 160,000

km2, is surrounded by the Badanjilin and Tenggeli
Deserts (Figure 1); it is located within the lower reach of
the Shiyang River basin in the Hexi Corridor of northwest
China, supporting a population of about 307,000. The
ground water system of the Minqin oasis is a highly com-
plex multilayered system consisting of 10 to 15 layers or
zones, with thickness ranging from 2 to 20 m. The upper
unconfined aquifer consists predominantly of sand and
gravel, and the lower aquifers exist under semiconfined to
confined conditions with vertical interconnections.
Except for the unconfined aquifer, there are no continu-
ous aquifers or hydrogeologic units within this system.
Furthermore, the system is further complicated by two
hidden faults that transect the Minqin oasis aquifer.
The ground water system is mainly influenced by the
source and sinks terms in vertical direction with relatively
minor lateral fluxes into the system. A more detailed
description of the hydrogeologic system can be found in
Ma et al. (2005).

In the study area, the Shiyang River is the only
source of surface water and has been used for irrigation
in the Minqin oasis, with the Hongyashan reservoir estab-
lished within the lower reach in 1958. Unfortunately,
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with the development of industry and agriculture in the
neighboring city of Wuwei, large diversions from the
Shiyang River have significantly reduced inflows into the
Hongyashan reservoir from 5.4 3 108 m3 in 1950s to
1.2 3 108 m3 in 1990s with a decrease of 1.2 3 108 m3

occurring from 1980 to 2000 (Huo et al. 2007). High
inflows into the reservoir occur in spring, but relatively
little flow in summer and autumn seasons reaches the res-
ervoir because of upriver diversions by Wuwei City.
Because ground water storage in the Minqin oasis is
strongly influenced by surface water conditions, the Hon-
gyashan reservoir plays an important role on transient
ground water levels.

The Minqin oasis has an arid climate, with average
annual precipitation and evaporation values of 109.5 and
2646.2 mm/year, respectively, over the past 50 year. The
agricultural sector is by far the major user of water re-
sources and makes up 93.3% of total water consumed in
this region. Because the size of the irrigation area in the
study region has increased from 56 kha in 1980 to 63 kha
in 1997, ground water extractions have increased. In the
year 2000, there were 9140 known extraction wells in the
Minqin oasis, with the estimated quantity of extracted
ground water via these wells, 6.57 3 108 m3, substan-
tially exceeding that of natural replenishment, estimated
to be 1.0 3 108 m3 (Huo et al. 2007). Because the ground
water usage is not sustainable, ground water levels in
the oasis have declined significantly.

Last, there is a seasonal component to ground water
level changes, coinciding with both human activities and

weather. Ground water levels decline in the summer and
autumn agricultural seasons in response to higher irriga-
tion extractions and evapotranspiration (ET) losses, with
partial ground water level recovery in winter and spring.
The combination of increased ground water extraction
and reduced surface water recharge via the Hongyashan
reservoir, however, has produced a long-term trend of
ground water level declines in the study area that has
accelerated in recent years.

ANN Methodology
The ANN methodology is an alternative to physical-

based ground water modeling approaches. Coppola et al.
(2005b) provide an overview of basic ANN concepts
related to architecture, transfer functions, learning algo-
rithm, development heuristics, and issues related to
ground water modeling. Among the ANN architectures
and algorithms, the back propagation (BP) ANN has been
applied successfully to solve many different types of
problems. Figure 2 shows a representative feed forward
neural network, which was also used in this study, con-
sisting of three distinct layers: an input, hidden, and out-
put layer.

The training of the network consists of a forward
propagation of the inputs and a backward propagation of
the error. In the forward procedure, the effect of an
applied activity pattern at the input layer is propagated
through the network layer by layer. The activation value

Figure 1. Map depicting the Minqin oasis, the lower reach of Shiyang River, and the Hongyashan reservoir.
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at ith neuron in nth layer ani is given by the following
equation:

ani¼
Xm
j¼1

Wn
jiO

n21
j 1 bni ð1Þ

where Wn
ji is the weight of the link between ith neuron in

the nth layer and jth neuron in the (n 2 1)th layer; On21
j

is the output of the jth neuron in the (n 2 1)th layer; bnj is
the bias of the ith neuron in the nth layer; and m is the
number of neurons in j layer. The activation value of
a neuron is used to obtain the output value of that neuron
through the transfer function. The general functional form
of the sigmoidal logistic transfer function, which was
used in this study and is the most commonly used non-
linear transfer function, is given by:

f ðtÞ ¼ 1=ð1 1 expð2 tÞÞ ð2Þ

where t represents the weighted sum for a node in the hid-
den layer and exp denotes the natural exponential func-
tion. The function value of each neuron in the output
layer is obtained by propagating the effect of input
through layers. The goal of ANN is to establish a relation
of the form as follows:

Ym ¼ f ðXnÞ ð3Þ

where Xn is an n-dimensional input predictor vector con-
sisting of x1, x2, . xn; and Ym is an m-dimensional output
or target vector consisting of prediction variables of inter-
est y1, y2, . ym. Normally, the network is trained by a BP
algorithm, which adjusts the weights and biases so as to
minimize the error function given by:

E ¼
X
P

X
m

ðyi 2 hiÞ2 ð4Þ

In this case, yi is the ANN computed output of sam-
ple i, hi is the observed output of sample i, and P is the
number of training patterns or data sets.

In this study, the data were divided into three distinct
data sets for the purpose of ANN training, verification,

and validation. During network learning, the training
samples are processed through the ANN, and the connec-
tion weights are adjusted adaptively until a minimum
acceptable error is achieved between the predicted and
the observed output. Intermittently, during training, the
verification data set is processed through the ANN to
ensure that it is not overfitting the training set. Following
training, the ANN is tested with the validation data set to
assess how well it has learned to generalize system
behavior.

In designing a robust and accurate ANN model, the
modeler must address a number of important factors,
including the type and structure of the neural network,
the input prediction variables used, and data preprocess-
ing. This is generally accomplished through a combina-
tion of best professional judgment, heuristic rules, and
trial and error.

ANN Models for Ground Water Level Variations

Model Variables
Perhaps the single most important step in ANN

model development is selecting the set of input variables
necessary for predicting the output variables (i.e., system
behavior) of interest. Ideally, selection of the inputs is
predicated on a basic conceptual if not theoretical under-
standing of the system dynamics (Coppola et al. 2003b).
In this application, to predict a regional average ground
water level at the conclusion of a monthly stress period,
important source and sink terms, which govern ground
water level responses via aquifer storage changes, were
represented either explicitly or implicitly by ANN model
inputs.

For this modeling problem, there are a number of
important causal variables that are difficult to explic-
itly represent because they are difficult to accurately
quantify either by their nature or as a practical matter.
For example, in the oasis, where agriculture is the
dominant ground water user, irrigation extraction is the
variable that most strongly influences monthly ground
water level changes. However, with more than 9000
wells within the oasis for which limited well with-
drawal information exists, it is difficult to accurately
estimate monthly ground water extractions. Conse-
quently, total irrigation area and synthesis irrigation
area, which largely determine the total agricultural
water demand that must be met by irrigation, were
used as surrogate input variables for ground water
extraction.

In this study, the following seven variables were used
as ANN model inputs: initial ground water level, monthly
total precipitation, monthly total water surface evapora-
tion (E0), monthly total surface water reservoir inflow,
population, monthly synthesis irrigation ratio, and irriga-
tion area.

The initial monthly ground water level is a fundamen-
tal input for stepwise prediction of this variable at the
conclusion of the monthly stress period. That is, the ini-
tial state of a system is a fundamental variable for pre-
dicting a system’s future state.

Figure 2. Architecture of a three-layered BP-ANN used in
study.
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E0 is correlative with meteorologic factors that deter-
mine the evapotranspiration for specific plants. For the
Minqin oasis, changes in crop types cultivated and their
relative proportions vary little over time. Consequently,
evaportranspration was principally determined by climate
factors, with E0 serving as a surrogate variable for eva-
portranspration. The E0 values were estimated with an
evaporation dish located in the center of study area. Pre-
cipitation data were collected from a single weather sta-
tion located within the oasis.

The synthesis irrigation ratio is the average monthly
irrigation quantity per unit area, defined by the propor-
tions and irrigation ratio of specific crop planting, com-
puted in accordance with Equation 5:

W ¼
XK
k¼1

ðqk 3 wkÞ ð5Þ

where W is the synthesis irrigation ratio, qk is the planting
percentage of the kth crop, K is the number of crop types,
and wk is the irrigation water volume per unit area for the
kth crop.

Because total irrigation water volume always ex-
ceeds the total surface water inflow volume, the total
annual surface water volume is usually exploited for irri-
gation. Any irrigation water shortage is made up by
ground water exploitation. Surface water inflows not only
reflect ground water recharge via reservoir leakage but
also help determine ground water irrigation extraction.
Consequently, surface water inflow in combination with
the two agricultural factors aforementioned serve as sur-
rogate variables for irrigation ground water extraction.
This demonstrates how the ANN approach can use surro-
gate variables for implicitly representing important causal
factors that are extremely difficult to quantify, particu-
larly over a large regional area.

The monthly surface water inflow was calculated
using Equation 6:

Q ¼ v 3 d 3 24 3 3600 ð6Þ

where Q is the total monthly surface inflow (m3), v is the
flow velocity measured at the reservoir (m3/s), and d is
the sum number of days in 1 month. The constants 24 and
3600 represent seconds and hours, respectively, and are
conversion factors.

Last, population was included to represent potable
and industrial water extraction as well as other potential
human impacts on ground water (e.g., impervious surface
creation).

There are 70 ground water–monitoring wells that are
relatively uniformly distributed across the Minqin oasis,
with levels monitored weekly. In general, as shown in
Figure 3, there is a long-term declining trend in water
levels from 1980 to 1997, but with a consistent interan-
nual seasonal cycle, characterized by lower levels during
the summer and autumn agricultural season followed by
partial ground water level recoveries in spring and winter.
In this study, the monthly average ground water level rep-
resents the target ANN prediction variable and was calcu-
lated using Equation 7:

h ¼
"Xq

l¼1

 Xr
s¼1

hls

!#
=ðq 3 rÞ ð7Þ

where hls is the observation data in well l at s time, q is
the total number of wells, and r is the total times for
observation of ground water level within 1 month.

It should be noted that while the ANN models devel-
oped in this study used only seven input variables to cap-
ture overall regional factors, many of the variables could
be further spatially disaggregated as necessary and could
easily be represented with additional ANN input nodes.
This may be warranted, for example, if predicting ground
water levels at multiple specific locations within the
region, where slightly different meteorologic, hydro-
logic, and agricultural irrigation patterns may exist over
space. An alternative approach is to develop a separate
ANN model for each prediction location using inputs
specific and unique to the area, but it is still possible that
spatial disaggregation of the inputs may improve model
performance.

Development and Testing of ANN Models
Recognizing that the impact of inflow into the Hon-

gyashan reservoir on ground water is different in the vari-
ous regions, two separate ANN models were developed
for the Minqin oasis; one for the Xinhe subregion located
in near proximity to the Hongyashan reservoir, and the
other for the Xiqu subregion located relatively far from
the reservoir (Figure 1). The two subregions, Xinhe and
Xiqu, are monitored by 34 and 36 monitoring wells,
respectively, with monthly average ground water levels
calculated for each using Equation 7.

To take advantage of the generalization ability, sam-
ples of 216 monthly input-output data from 1980 to 1997
were randomly divided into three equal sets of 72 records
for the purpose of training, verification, and validation.
ANN development was performed with Matlab 6.5, with
final models consisting of a three-layered perception

Figure 3. The ground water level dynamics from 1980 to
1997 in typical wells in Xinhe and Xiqu.
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architecture, with 7 input (i.e., predictor) variable nodes,
10 hidden layer nodes, and 1 output (i.e., prediction)
node.

A combination of BP and conjugate gradient learning
algorithms was used for training. Intermittent verification
during ANN training was performed to avoid overtrain-
ing. That is, during training, network learning is verified
periodically with the verification data set, and this pro-
cess was repeated until the verification error begins to
increase. At this point, approximately after 5000 epochs,
training was terminated, with the corresponding set of
nodal connection weight values saved. Following this
development phase, the ANN model is validated with the
third unique data set to evaluate ANN prediction capability.

The mean absolute error (MAE) and relative errors
achieved with the training, verification, and validation
data sets were calculated using Equations 8 and 9, with
values presented in Table 1.

Ea ¼
 X72

i¼1

jðhi 2 h9iÞj
!
=72 ð8Þ

where Ea is the MAEs for training, verification, and vali-
dation data sets; hi is the measured ground water level;
and h

0
i is the corresponding ANN predicted ground water

level.

Er ¼ Ea=�h ð9Þ

where Er is the relative error with respect to the monthly
range of fluctuation and �h is the average monthly range
of ground water fluctuation, defined by the average dif-
ference between maximum and minimum of ground
water level within 1 year. In addition, the variance of
absolute error was used to quantify the changes of error.

For both models, the errors for the three data sets
(i.e., training, verification, and validation) are low, with
the MAE less than 0.5 m. The simulated vs. observed
ground water levels in the two subregions are all have
consistent change trends (Figure 4) with mean absolute
validation errors for the Xinhe and Xiqu models of 0.29
and 0.37 m, respectively, illustrating high predictive per-
formance. The relative validation error with respect to
average monthly range of ground water fluctuation for the
Xinhe and Xiqu models is 8.3% and 9.3%, respectively.
Furthermore, the analysis for variance of error shows that
the variation in error for both ANN models is small.

By comparison, a calibrated numerical ground
water model for the Minqin oasis was developed (Ma et
al. 2002) and achieved a mean absolute validation pre-
diction error of about 0.5 m. Consequently, the ANN
models with comparatively much less developmental re-
quirements, time, and effort provided superior predictive
accuracy of the mean monthly regional ground water re-
sponses. Of course, the numerical model can provide
many predictions over space, but for simulating and ana-
lyzing general ground water level responses in the oasis,
the ANN models used in this study serve as an accept-
able surrogate.

Sensitivity Analysis for ANN Models
An important objective in modeling the oasis with

ANNs was to gain a better understanding of the factors
influencing ground water levels. Systematically varying
the values of input variables is useful for projecting
responses under different conditions. However, in this
study, sensitivity analyses were also conducted to semi-
quantify the relative importance of each input variable
for accurately predicting ground water levels. In this
analysis, comparison ANN models that excluded a single
input variable were developed and validated. To assess
the relative importance of the excluded variable, the pre-
diction accuracy of the ‘‘reduced’’ ANN model (i.e., one
excluded input variable) was compared against the pre-
diction accuracy attained by the ‘‘complete’’ ANN model
(i.e., used all seven input variables). The sensitivity analy-
sis results derived from the validation data for the Xinhe
and Xiqu are presented in Table 2.

The rank is the relative importance of each variable
with respect to the other variables, quantified in terms of
an error ratio. For example, for the Xinhe model, elimi-
nating the monthly evaporation input variable increased
the MAE of the ANN model during validation by a factor
of 1.96, represented in the table as the ratio. The corre-
sponding rank for this variable is five, indicating it is the
fifth most important variable for accurately predicting
ground water levels.

Similar to Coppola et al. (2005b), the ratio for each
ANN input variable was computed as:

Ratio ¼ MAE without simulator variable

MAE with ANN simulator variable
ð10Þ

Table 1
Statistics of ANN Training, Verification, and Validation Results for the Xinhe and Xiqu ANN Models

Statistic

Xinhe Xiqu

Training Verification Validation Training Verification Validation

Number of samples 72 72 72 72 72 72
MAE (m) 0.09 0.24 0.29 0.06 0.25 0.37
Variance of the error (m) 0.018 0.037 0.039 0.021 0.039 0.044
Relative error (%) 2.6 6.9 8.3 1.5 6.3 9.3
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A ratio of less than 1.0 signifies that elimination of the
input variable actually increases ANN accuracy, whereas
a ratio of more than 1.0 signifies inclusion of the variable

increases predictive accuracy. A ratio ¼ 1 signifies the
corresponding variable is neutral and neither increases or
decreases ANN performance.

The results of sensitivity analysis for Xinhe and
Xiqu indicate that all seven input variables improve ANN
predictive capability, though their relative importance
varied, from nominally to extremely important. For the
two subregions, the initial ground water level is the most
important input variable for determining the next month’s
water level. Agricultural activities, namely ground water
irrigation, as represented by irrigation area and monthly
synthesis irrigation ratio in the ANN model, are the two
next important prediction variables, which is consistent
with ground water storage changes in this system.

The results indicate that surface water inflow into the
reservoir is the fourth most important variable, and that
this variable most strongly influences ground water levels
prediction in Xinhe, which is hydrogeologically consis-
tent, as this region is closer to the reservoir than Xiqu.
Consequently, Xinhe has more access and hence uses
more surface water for irrigation, which simultaneously
reduces demand for ground water extractions while artifi-
cially increasing areal recharge from irrigation. Also,
leakage of water through the unlined reservoir bottom is
an added source of ground water recharge in the area.

There is also consistency in the results for the meteo-
rological variables for the two subregions. Generally, pre-
cipitation and evaporation have relatively less influence
on monthly ground water levels prediction in the Minqin
oasis. The impact of these meteorological variables on
ground water levels in this region is relativity small over
short timescales because of several factors. The relatively
deep ground water levels mute temperature effects and
delay the arrival time of recharge from precipitation,
with the volume of recharge via precipitation in this
arid region relatively small. Per unit area, there is only
109.5 mm of annual precipitation vs. 657 mm of irriga-
tion water.

As expected, there were some discrepancies between
the two subregions, with evaporation ranking fifth and

Table 2
Sensitivity Analysis Result for Xinhe and Xiqu ANN Models during Validation

Region Factors AF LG PO PR EV SW IA SI

Xinhe Hidden neuron 10 9 8 8 8 9 9 8
MAE (m) 0.29 2.07 0.46 0.39 0.57 0.68 0.73 0.75
Maximum absolute

error (m)
1.20 7.58 1.95 1.68 2.34 2.79 3.01 3.21

Ratio — 7.15 1.60 1.35 1.96 2.36 2.51 2.60
Rank — 1 6 7 5 4 3 2

Xiqu Hidden neuron 10 9 9 8 8 9 8 8
MAE (m) 0.37 3.38 0.40 0.41 0.39 0.51 1.21 1.22
Maximum absolute

error (m)
1.20 10.92 1.31 1.36 1.24 1.65 3.94 3.92

Ratio — 9.12 1.08 1.12 1.04 1.37 3.26 3.29
Rank — 1 6 5 7 4 3 2

Note: AF signifies all seven input variables; LG, PO, PR, EV, SW, IA, and SI mean, respectively, the modes of which last month ground water, population,
precipitation, evaporation, surface water inflow, irrigation area, and synthetic irrigation ratio eliminated as ANN input variables.

Figure 4. Comparisons of observed vs. ANN predicted
ground water levels for validations data using BP network
(a, Xinhe and b, Xiqu).
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seventh, respectively, for Xinhe and Xiqu. Because sur-
face water impacts ground water levels via reservoir leak-
age, high evaporation rates reduce this contribution,
which would be most felt in Xinhe, the closer subregion.
Similar to meteorological factors and in contrast to agri-
cultural activities, population is a relatively nonimportant
variable because of the underdeveloped industry, which is
insignificant relative to the extensive agriculture activities
in the region.

The sensitivity analysis was useful for confirming
and even slightly refining the conceptual framework of
the system, as well as providing insights for improving
ANN prediction performance. Because the full range of
values for the other input variables is considered in the
analysis, the average importance of each input variable
for accurately predicting ground water levels with the
particular ANN model is quantified. The results demon-
strate a high degree of consistency with physical condi-
tions both within each region and between regions, which
increases confidence in the validity of the results. Fur-
thermore, the results are partially supported by the simu-
lations described in the next section.

Simulation of Ground Water Level in the
Minqin Oasis

From the sensitivity analysis results aforementioned,
irrigation ground water extraction (represented by surro-
gate agricultural factors) and surface water inflows into
the reservoir, both of which constitute human control
variables, are the two most influential factors affecting
monthly ground water level changes in the Minqin oasis.
Monthly synthetic irrigation ratio is mainly correlated
with the crop proportion, of which the change is small. In
this study, then, ground water levels for Xinhe and Xiqu
were simulated using different irrigation areas and in-
flows into the Hongyashan reservoir.

The objective of these simulations was to investigate
ground water levels changes over 1-year horizons in
response to variable irrigation area and surface water in-
flows. For these simulations, initial ground water levels
of 1346 and 1309 m, an average condition over the period
of interest, for Xinhe and Xiqu, respectively, were
selected. Within the Minqin oasis, annual variations be-
tween monthly distributions of precipitation, evaporation,
and surface inflow are relatively minor. Consequently,
average monthly values computed for these variables

from 1980 though 1997 were used for all simulations and
are presented in Table 3. In addition, population and irri-
gation schedule values representing current levels were
used. It should be noted that while extreme conditions
may also be simulated, the objective of this study was to
evaluate operational options for the long-term sustainable
use and preservation of the ground water resource.

Figure 5 shows ground water levels simulations over
the 1-year horizon for three levels of irrigation areas, 55,
60, and 65 kha, of which 60 kha is near the current irriga-
tion area (58.6 kha), with a fixed surface water inflow
value of 1 3 108 m3/yr. The simulation results for Xinhe
are consistent with Xiqu, in that ground water level de-
clines are highest in July, August, and September, when
the corresponding irrigation quantities are 1050, 1650,
and 1050 m3/ha. The ground water levels rise later in the
year but do not recover to the initial level because overall
there has been a net loss in ground water storage.

The monthly ground water levels change as a func-
tion of irrigation areas. Given the same initial conditions,
the final monthly ground water levels are lower for larger
irrigation areas. The comparative simulations clearly
demonstrate a consistent pattern between agricultural and
water-use activities and ground water levels. For exam-
ple, for an assigned irrigation area of 65 kha, the mean
ground water levels were predicted to decline to 1342.1
and 1305.5 m above mean sea level (amsl) for Xinhe and
Xiqu, respectively, compared with 1344.4 and 1307.2 m
amsl for these two subregions when the irrigation area is
just 55 kha. Obviously, with larger irrigation areas,
ground water levels decline more over the course of the
year. Therefore, reducing the irrigation area is an effec-
tive measure for reducing the ground water level declines.

Ground water level changes over 1-year periods were
also simulated for different surface water inflow values,
using an irrigation area of 60 kha, approximately equal to
the current level. Figure 6 shows simulation results for
the three surface water quantities, 1 3 108, 2 3 108, 3 3

108 m3/yr, of which the first constitutes the current level.
Similar to irrigation area, surface water inflow influences
ground water levels, with larger inflow quantities result-
ing in higher ground water levels. However, the effect
of inflows on ground water levels is different in the two
subregions, with more influence exhibited for Xinhe than
in Xiqu.

For example, in Xinhe, the mean ground water level
declines were predicted to be 0.53 and 0.03 m, with

Table 3
Evaporation, Precipitation, and Irrigation Quantities for Each Month for Simulations

Month 1 2 3 4 5 6 7 8 9 10 11 12

EV (mm) 46.1 71.8 165.7 302.0 389.1 385.3 389.9 339.5 245.2 162.1 91.8 51.8
PR (mm) 0.5 1.1 3.3 4.5 10.1 18.4 23.0 27.4 11.9 5.9 0.6 0.5
SI (m3/ha) 900 750 0 1125 1050 1650 1050 450 0 0 0 0
IP (%) 0 4.6 36.1 12.2 7.3 6.6 1.9 1 0.9 15.2 14.2 0

Note: EV, PR, SI, and IP mean, respectively, evaporation, precipitation, synthetic irrigation ratio, and percentage that monthly inflow occupy annual total inflow.
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surface water inflow values of 1 3 108 and 3 3 108 m3/yr,
respectively, for a net difference of 0.5 m over the 1-year
period. By comparison, for Xiqu, the difference is only
0.15 m for the same two inflow values. These simulation
results are consistent with the sensitivity analysis as well
as our conceptual understanding of the system.

Based upon the simulation results, the relationship
between declining ground water levels and irrigation area
and surface water inflows from the outer region can be
extrapolated to linear relationships (Figures 7 and 8). The
influence of irrigation area on ground water levels is simi-
lar in Xinhe and Xiqu, but the influence of the surface
water inflows is different for the two areas. When surface
water is 1 3 108 m3/yr and irrigation area less than
53 kha, mean ground water levels in the Minqin oasis are
expected to remain at their current levels. Consequently,
if surface water inflows cannot be increased, reducing
irrigation area is an indispensable method for controlling
ground water level declines. Because Xinhe is located
near the Hongyashan reservoir, its ground water levels are
significantly more affected by surface water inflows into
the reservoir. By contrast, Xiqu, located relatively far

from the Hongyashan reservoir, is less affected by surface
water inflows.

The simulation results also indicate that when the
irrigation area is 60 kha and surface water inflow is
3.2 3 108 m3/yr, ground water levels in Xinhe can be
maintained at their present status, whereas ground water
levels in Xiqu will continue to drop at 0.3 m/yr. Thus,
increasing surface water inflow from outer region can
reduce ground water level declines in Xinhe but has rela-
tively little mitigative effect for Xiqu.

Last, it should be emphasized, given the nature of
the data and objectives of this study, that one of the inher-
ent advantages of ANNs is their ability to perform well
with noisy data (Swingler 1996; Coppola et al. 2003a).
This underscores one of the advantages of using ANN in
this study, as many of the variables have a high level of
impreciseness or uncertainty in their values. The size of
the study area and the extreme magnitude of ground
water level decline over a relatively long period neces-
sitate that significant changes must be undertaken over a
large scale, and, even with imprecise data, the ANN mod-
els appear more than capable of providing a sufficiently

Figure 5. ANN ground water level simulation results for the
Minqin region for a 1-year horizon using different irrigation
areas (a, Xinhe and b, Xiqu).

Figure 6. ANN ground water level simulation results for the
Minqin region for a 1-year horizon using different surface
water inflow from the outer region (surface water inflow W1,
W2, and W3, respectively, 1 3 108, 1 3 108, 1 3 108 m3/yr; a,
Xinhe and b, Xiqu).
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accurate projection of human activities on the ground
water system for assisting in developing appropriate
policies.

Conclusions
This research demonstrates that ANN modeling can

capture important temporally and spatially distributed
human factors like agricultural practices and water ex-
traction patterns on a regional basin (or subbasin) scale,
and achieve high predictive accuracy, as well as improv-
ing understanding of complex ground water systems. The
modeling results indicate that human activities and sur-
face water inflows are the most important factors

affecting monthly ground water level changes in the Min-
qin oasis. As the simulation exercises demonstrate, which
is supported by data, the ground water usage has been not
sustainable, and if human stresses remain unchecked,
ground water levels will continue to decline. The simulation
results indicate that reducing irrigation areas and increas-
ing surface water inflows are critical measures for reduc-
ing ground water level declines within the Minqin oasis.

For regional-scale ground water basins, water scien-
tists and decision makers need to understand the effect of
hydrologic, meteorologic, and human activities on ground
water conditions. The sensitivity analysis and simulation
capability afforded by ANN models, as shown in this
study, can be an extremely effective and efficient tool for
ground water analysis and management, and for the Min-
qin oasis, helped achieve the following objectives: (1)
gaining a better understanding of the system by semi-
quantifying the relationships between human activities
and environmental conditions on ground water levels; (2)
identifying the appropriate levels of agricultural activities
and surface water reservoir inflows (i.e., upstream diver-
sions) for maintaining ground water levels; (3) revising
data collection strategies for improving models and
increasing confidence in simulation projections.

The modeling results and analysis will help decision
makers understand the influence of human actions on the
ground water system, promoting its sustainable use and
thereby preserving the long-term economic viability of
the region. At the same time, additional work is required.
The ANN models developed in this study have limited
ability to reveal differences in ground water responses
over space in response to variable agricultural practices
and environmental conditions. In future work, we will
develop ANN models to predict ground water levels at
multiple locations to delineate spatial variations of ground
water responses across the regional-scale basins, as well
as perform multiobjective optimization.
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