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Abstract. The Lorenz attractor is one of the best-known examples of applied mathematics. However,
much of what is known about it is a result of numerical calculations and not of mathemat-
ical analysis. As a step toward mathematical analysis, we allow the time variable in the
three-dimensional Lorenz system to be complex, hoping that solutions that have resisted
analysis on the real line will give up their secrets in the complex plane. Knowledge of
singularities being fundamental to any investigation in the complex plane, we build upon
earlier work and give a complete and consistent formal development of complex singular-
ities of the Lorenz system using the psi series. The psi series contain two undetermined
constants. In addition, the location of the singularity is undetermined as a consequence
of the autonomous nature of the Lorenz system. We prove that the psi series converge,
using a technique that is simpler and more powerful than that of Hille, thus implying a
two-parameter family of singular solutions of the Lorenz system. We pose three ques-
tions, answers to which may bring us closer to understanding the connection of complex
singularities to Lorenz dynamics.
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1. Introduction. The nonlinear system of equations

dx

dt
= 10(y − x),

dy

dt
= 28x− y − xz,

dz

dt
= −8z/3 + xy,(1.1)

which is named after Lorenz, gives the best-known example of a strange attractor.
Lorenz [21, 22] derived this system to argue that the unpredictability of weather is due
to the nature of the solutions of the Navier–Stokes equations and not due to stochastic
terms of unknown origin, his point being that a deterministic system could possess an
attracting and invariant set on which the dynamics is bounded and linearly unstable.
When such strange attractors exist, trajectories are chaotic and appear random.
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While Lorenz [21, p. 141, 1963] could write that the atmosphere was not nor-
mally regarded as deterministic, we now know that the incompressible Navier–Stokes
equations by themselves explain a remarkable wealth of turbulence phenomena in-
cluding coherent motions in the near-wall region, the law of the wall, intermittency,
and vortex structures in fully developed turbulence [2]. The density and temperature
of the atmosphere vary with altitude, and there is significant electrical activity in the
atmosphere that is sustained by about 40,000 thunderstorms that occur around the
world in any single day [6, Chapter 9]. If we nevertheless think that the physics of
the atmosphere is deterministic, Lorenz and his system are partly responsible.

Lorenz’s point of view was dynamical. He viewed the state of (1.1) as a point
in R3 and its solutions as trajectories in R3. The dynamical point of view has over-
whelmingly dominated work on the Lorenz system, and Lorenz’s original paper [21]
has remained an outstanding introduction to dynamics. In it, a careful reader can find
discussions of numerical errors, of concepts of stability, of symbolic dynamics (aspects
of which Lorenz seems to have rediscovered for himself), of the density of periodic
solutions on the Lorenz attractor, and of the fractal nature of the Lorenz attractor.

The point of view in this paper, unlike Lorenz’s, will be mainly function theoretic.
We view t in (1.1) as a complex variable and x, y, z as analytic functions of a complex
variable. Our interest is in triples of analytic functions which satisfy (1.1). Our hope
is that an investigation in the complex plane will open a route to the mathematical
analysis of the Lorenz system.

For the most part, we deal with certain singular solutions of the Lorenz system,
which will be introduced momentarily. As the right-hand side of the Lorenz system
(1.1) is analytic, every solution of the Lorenz system admits analytic continuation to
the complex plane. For some solutions, the analytic continuations have singularities
of the form we deal with, as indicated by numerical results summarized in section 5.
In the second part of this introduction, we pose three questions to help connect the
complex singularities with Lorenz dynamics.

From residue integration, the method of steepest descent, and the use of deforma-
tion of contours to effect analytic continuation of certain special functions, we know
that knowledge of singularities is often useful to investigations in the complex plane.
This observation explains our focus on singular solutions of the Lorenz system.

1.1. Psi Series Solutions of the Lorenz System. The most common types of
singularities are poles, algebraic branch points, and logarithmic branch points. The
singularities of the Lorenz system that we examine are of none of these types but are
given by psi series representations.

Definition 1.1. A logarithmic psi series centered at t0 is a series of the form∑∞
n=−N pn(η)(t − t0)n, where N is an integer, η = log(b(t − t0)), and each pn is a

polynomial in η. In the definition of η, b is a complex number with |b| = 1, with
b = ±i often being convenient choices.

Throughout this paper, log will denote the principal branch of log. The choice
of the branch is ultimately immaterial but taking η = log(−i(t − t0)) instead of
η = log(t − t0) leads to more convenient branch cuts if �(t0) < 0, as we explain
in section 3. For a slightly different definition of logarithmic psi series, along with
definitions of psi series of other types, see [13, Chapter 7.1]. The only type of psi
series that arises in this paper is the type given by Definition 1.1, and by psi series
we refer to that definition only.

The psi series of Definition 1.1 are like the Laurent series, except that the co-
efficients are polynomials in η instead of being constants. For that reason, the psi
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series singularities were called pseudopoles by Hille [11]. Even though the coefficients
are polynomials in η, each nonzero term of the logarithmic psi series dominates the
following term in magnitude in the limit t → t0.

In an intriguing and original pair of papers, Tabor and Weiss [32] and Levine and
Tabor [19] considered psi series solutions of the Lorenz system (1.1). The psi series
they used were expressed as a double sum. Below we give the psi series in a different
form:

x(t) =
P−1(η)
t− t0

+ P0(η) + P1(η)(t− t0) + P2(η)(t− t0)2 + · · · ,

y(t) =
Q−2(η)
(t− t0)2

+
Q−1(η)
t− t0

+ Q0(η) + Q1(η)(t − t0) + Q2(η)(t− t0)2 + · · · ,

z(t) =
R−2(η)
(t− t0)2

+
R−1(η)
t− t0

+ R0(η) + R1(η)(t− t0) + R2(η)(t− t0)2 + · · · .(1.2)

Here the Pi, Qi, and Ri are polynomials in η, where η = log(b(t− t0)) as in Definition
1.1. As the Lorenz system is autonomous, t0 is an arbitrary complex number. The
fact that the leading powers of (t − t0) in the three series in (1.2) are −1, −2, and
−2 may be guessed by substituting poles (t − t0)−α, (t − t0)−β , (t − t0)−γ for x, y,
z into the Lorenz system and then solving for α, β, γ by matching the order of the
left- and right-hand sides [32]. This test-power method [13, p. 90] does not always
work and can be tricked into failing for the Lorenz system with a linear change of
variables.

Melkonian and Zypchen [24] have recast the psi series of Tabor and Weiss [32] into
the formalism of Hille [11]. The formal development of psi series that we give in section
3 is similar to that of Melkonian and Zypchen [24] but improves that of Melkonian and
Zypchen in two respects. First, the development in section 3 shows the dependence
on undetermined constants C and D explicitly, pointing out the occurrence of η and
C in the group (η+C). Second, we prove that the degrees of Pm+1, Qm, Rm are given
by �m+2

2 � for m = 0, 1, . . . . The proof hinges on a surprising cancellation for m = 2.
It is important to get such details fully right if a mathematical theory is to be set up.
As Hille [13, p. 68] pointed out, “constants of integration play a remarkable role in
the advanced theory of nonlinear DEs.” In addition, a complete formal calculation is
essential for a fully correct convergence proof.

The first few coefficients of the psi series (1.2) are listed in Table 1.1. It is evident
that η and C always occur in the group (η+C). If D were real, the coefficients of the
polynomials in (η +C) listed in that table all would be either pure imaginary or real.

The following is one of our main theorems. It reappears in a more specific form
in section 4, where it is proved.

Theorem 1.1. The psi series (1.2), some of whose coefficients are listed in Table
1.1, satisfy the Lorenz system (1.1) in the disc |t− t0| ≤ r for some r > 0 but with
the singular point t = t0 and a branch cut deleted from the disc. The constants C and
D are undetermined.

The proof of this theorem is valid for any choice of the undetermined constants
C and D, but the estimate for r depends upon the choice. A key step in its proof is
to show the convergence of the psi series.

An important aspect of the convergence of the Lorenz psi series is not brought
out in Theorem 1.1. As evident from the appearance of η in Definition 1.1, a typ-
ical psi series will have logarithmic branch points in the t-plane. To get around
the multiple-valuedness, Theorem 1.1 fixes a branch cut in the t-plane. The branch
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Table 1.1 Coefficients of the psi series of (1.2) with η as in Definition 1.1. Evidently, the degrees
of Pm+1, Qm, Rm are �m+2

2
� for m = 0, 1, 2, 3. The other valid choice for coefficients

of (1.2) is obtained by changing the signs of all the Pi’s and Qi’s, while leaving the Ri’s
unchanged. The constants C and D are both undetermined.

Q−2, R−2 − 1
5

i − 1
5

P−1, Q−1, R−1 2 i 2 i 17
9

P0, Q0, R0
71
9

i − 349
81

i − 988
81

i(η + C) 1385
54

− 988
81

(η + C)

P1, Q1, R1 − 9880
81

i(η + C) − 25991
108

i + 64220
243

i(η + C) − 211189
972

+ 167960
729

(η + C)

P2 − 2108195
972

i + 469300
243

i(η + C)

Q2
3
10

iD − 477319147
131220

i − 167831753
65610

i(η + C) − 273676
2187

i(η + C)2

R2 − 1
5

D + 138959125
17496

− 58846039
32805

(η + C) − 1444456
2187

(η + C)2

P3 iD − 96356411
6561

i(η + C) − 2736760
6561

i(η + C)2

Q3 − 25925844899
708588

i + 32
27

iD − 516846814
59049

i(η + C) + 26636480
2187

i(η + C)2

R3 − 55
27

D + 64036692917
3542940

− 2458513
2187

(η + C) + 813193160
59049

(η + C)2

P4
25
54

iD − 64653009635
708588

i − 107735075
118098

i(η + C) + 206615500
6561

i(η + C)2

cut can be dispensed with by parameterizing the Riemann surface using η. A dis-
cussion of convergence in the η-plane is found in section 4 (see Figure 4.1 in parti-
cular).

Hille’s “frontal attack” to prove convergence of psi series can be modified to apply
to the Lorenz system [11, 24]. In an appendix, Hille [12] pointed out that his technique
could handle only the Emden–Fowler system (see section 2) with p = 2, while a more
complicated technique due to Smith [30] could handle p = 2, 3, . . . . The technique we
use in section 4.1 is also a frontal attack, but it is a good deal more transparent than
Hille’s approach. In place of an elaborate analytic setup and an inductive hypothesis
to bound the coefficients of the psi series, we use the Laplace transform, elementary
combinatorics, and an elementary implicit function theorem. Our technique seems to
extend to all the cases handled by Smith [30]. Detailed comments on this point are
found in section 4.2.

1.2. Complex Singularities and Lorenz Dynamics: Three Questions. From
Theorem 1.1 we get a two-parameter family of singular solutions of the Lorenz system
(1.1). The form of the singular solutions is given by the psi series (1.2), and the two
undetermined constants C and D are shown in Table 1.1. The location t0 of the
singularity can be anywhere in the complex t-plane.

For some definite integrals, the singularities of the integrand and Cauchy’s residue
theorem imply the value of the integral. So we ask, what do the singular solutions of
the Lorenz system tell us about the dynamics in R3 for real time? As the analytic
theory of solutions of the Lorenz system is still in its infancy, a complete answer to the
question cannot be given. Nevertheless, the question merits a thorough discussion.

Many beautiful visualizations of the Lorenz attractor are found on the Internet.
The visualizations originally offered by Lorenz [21] are packed with information and
are models of concision. The Lorenz attractor is a butterfly-like subset of R3. Except
for the fixed points, all trajectories either approach the attractor as t → ∞ or are
already on it.
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Fig. 1.1 The periodic orbit in the first plot is labeled AB to indicate the sequence in which it moves
between the A quadrant (with x < −16.432, y < −16.432, z = 27) and the B quadrant
(with x > 16.432, y > 16.432, z = 27). Each filled circle is directly below a singularity
in the complex t-plane. To the right are plots of x(t) (solid), y(t) (dashed), z(t) (dotted)
against real t. In the bottom plot, the location of the complex singularities of AB that are
closest to the real line are marked as crosses. The orbit AB is computed with 547 digits of
precision.

Figure 1.1 shows the periodic orbit labeled AB, which resides on the attractor. A
great advantage of computing such orbits, as opposed to arbitrary trajectories, is that
the computations take on a definite character that makes it possible to report them
precisely. As already mentioned at the beginning of this introduction, periodic orbits
are believed to be dense in the Lorenz attractor. Such orbits can be computed with
great precision. The locations of the complex singularities shown in the rightmost plot
of Figure 1.1 were obtained by computing the orbit AB with more than 500 digits of
precision.

A worthy goal for the analytic theory of the Lorenz system is a proof of existence
of periodic solutions (x(t), y(t), z(t)) of the Lorenz system (1.1), where we seek a proof
that is based solely on mental conceptions. There is a definiteness to seeking periodic
solutions, as already pointed out. In addition, periodic orbits are key to extracting
order from chaos, to borrow an expression from Strogatz [31]. For instance, Figure
1.2, which illustrates the fractal property of the Lorenz attractor, was obtained by
computing periodic orbits. The plots were computed in parallel on a machine with
two quadcore 2.33 GHz Xeon processors. The plots took a day or two of computing.
For the theory behind such computations, see [33] and [34].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPLEX SINGULARITIES AND THE LORENZ ATTRACTOR 299

−10 0 10
−20

0

20

(a)

−2 −1 0 1

x 10
−3

−4
−2

0
2

x 10
−3

(b)

−4−2 0 2 4

x 10
−8

−5

0

5

x 10
−8

(c)

−1 0 1

x 10
−13

−2

0

2

x 10
−13

(d)

−1 0 1 2

x 10
−18

−2

0

2

x 10
−18

(e)

−1 0 1

x 10
−23

−2

0

2
x 10

−23

(f)

−1 0 1

x 10
−28

−2

0

2
x 10

−28

(g)

−1 0 1

x 10
−33

−2

0

2
x 10

−33

(h)

Fig. 1.2 Fractal property of the Lorenz attractor. (a) The intersection of an arbitrary trajectory on
the Lorenz attractor with the section z = 27. The plot shows a rectangle in the x-y plane.
All later plots ((b) and above) zoom in on a tiny region (too small to be seen by the unaided
eye) at the center of the red rectangle of the preceding plot to show that what appears to
be a line is in fact not a line. These plots and the plots of [33, 34], of which these plots
are a refinement, appear to be the only plots made of the fractal structure of the Lorenz
attractor.

A proof of existence of periodic solutions of the Lorenz system (1.1) appears to
be far away. We formulate three questions to serve as more immediate goals for the
development of the analytic theory of the Lorenz system.

Question 1.1. Are all singular solutions of the Lorenz system given by psi series
expansions (1.2) with suitable choice of the undetermined constants C and D?

The role of the undetermined constants C and D is partly shown in Table 1.1.
Their role in the psi series is clarified further in sections 3 and 4. Lorenz [21] gave
arguments that partially imply that a real solution of the Lorenz system cannot be-
come singular in finite time. The implication covers both increasing and decreasing
time. In section 5, we give a complete proof of that result. Thus for solutions of the
Lorenz system that are real for real t, the locations t0 of the complex singularities
must have a nonzero imaginary part. In fact, Foias and others [8, Theorem 2.3] have
proved that for solutions on the Lorenz attractor, the imaginary part of the location
of the singularity in the complex t-plane must exceed 0.037 in magnitude. For an
investigation of the backward-in-time behavior of the Lorenz system (for real data),
see the paper by Foias and Jolly [7].

The techniques used to deduce psi series solutions of the Lorenz system are not
of much use for answering Question 1.1. However, if t0 is any singular point of the
Lorenz system, then |x(t)| + |y(t)| + |z(t)| → ∞ as t → t0, as implied by a slightly
stronger theorem proved in section 5.

For analytic functions such as the gamma and zeta functions, analytic continu-
ation into the complex plane is an important step in understanding the true nature
of those functions [25]. The question of analytic continuation is important in the
theory of differential equations in the complex plane as well [13]. These observations
motivate us to ask the following question.
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Question 1.2. Do solutions of the initial value problem for the Lorenz system
with (x(0), y(0), z(0)) being finite (but possibly complex) admit of analytic continuation
to the entire complex t-plane except for branch points?

An affirmative answer to Question 1.1 appears to imply an affirmative answer to
Question 1.2. The process of analytic continuation can be blocked by singularities.
But if all singularities are given by psi series of the form (1.2), Theorem 1.1 implies
that we can continue around any such singularity into a disc of finite radius around
that singularity (radius is r in the theorem). The possibility where a succession of
psi series singular solutions of decreasing radii of convergence accumulate on another
singular point is easily ruled out if the answer to Question 1.1 is yes.

Singular solutions given by psi series representations exist for plane quadratic
systems as well as plane polynomial systems [12, 30]. Such planar systems certainly
cannot exhibit chaos [31]. The dynamics of planar systems is tightly circumscribed
by results such as the Poincaré–Bendixson theorem. Unlike the Lorenz system, the
planar systems considered by Hille [12] and Smith [30] can have real solutions that
develop singularities in finite time. Yet one is probably justified in thinking the mere
existence of singular solutions represented by psi series is unlikely to tell us anything
about the chaotic nature of the Lorenz system.

This is perhaps the place to comment on the three free parameters with which
the Lorenz system is usually written but which are given the values used by Lorenz
[21] in (1.1). The three parameters correspond to the Rayleigh number, the Prandtl
number, and the system size for the convection PDE from which the Lorenz system
was derived. With regard to the choice of these parameters, there are three cases for
which the Lorenz system admits a Laurent series as a solution [29, 32]. There are
five other cases, due to Segur [29] and Kuś [18], for which time-dependent integrals
of motion are known. In their pioneering work, Tabor and Weiss [32] considered
the connection between integrability and the type of the singularities. For another
discussion of the connection between psi series and integrability, see [3].

In addition to the integrable cases, there are a number of other regions in pa-
rameter space where the Lorenz system has nonchaotic dynamics yet admits singular
solutions with psi series representation. In these instances, it is quite possible that
even though the real-valued dynamics is nonchaotic, more varied solutions exist when
complex numbers are allowed. In the case of plane polynomial systems, although the
differential equations cannot have chaotic solutions that are real [1, 31], the equations
may have chaotic solutions that are complex.

It is not entirely clear how the nature of the singularity can be connected to
chaotic dynamics. It is perhaps significant that only real solutions have a bearing on
dynamics. Therefore we ask the following question.

Question 1.3. If a psi series solution of the Lorenz system (1.1) of the form
(1.2) is obtained by analytic continuation of a solution that is real for real t, what
constraints must C, D, and t0 satisfy?

The detailed development of psi series found in section 3 and partly shown in
Table 1.1 could help answer this question. Numerical computations are also likely to
be useful. A suspicion of ours is that the undetermined constant D is real for the psi
series singularities of Question 1.3.

2. A Brief History of Early Work on Psi Series. The equation of Briot and
Bouquet

(2.1) t
dw

dt
= pt + w + F (t, w),
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where F is a polynomial with quadratic and higher terms, seems to be the simplest
differential equation whose singularities are given by psi series. Dulac [4, p. 368,
1912] and Malmquist [23, p. 19, 1921] (also see Theorem 11.3.1 of [13]) proved that
the general solution of (2.1) around t = 0 is given by a convergent psi series if p is a
positive integer. For generalizations to higher order Briot–Bouquet equations, see [17].

In the last decade of his life, Einar Hille [10, 11, 12, 13] grew interested in the
Emden–Fowler equation d2y/dt2 = t−2/py1+2/p with p > 1 being a positive integer.
The Emden–Fowler equation originally arose in cosmology. The special case p =
2 is the Thomas–Fermi equation, which arose in atomic physics. After 60 years
of encounters with differential equations, Hille wrote a splendid book on ordinary
differential equations in the complex plane [13, 1976]. The last chapter of that book
gives an outline of the work of Hille and Russell A. Smith [30] on psi series singularities
of the Emden–Fowler equation. The techniques involved are highly relevant to the
Lorenz system. In section 4, we point out that some of the theorems of Hille and
Smith admit simpler proofs using an approach introduced in that section.

From Hille’s illuminating bibliographic discussions [13], it is clear that Dulac
[5, 1934] was a central figure with regard to psi series, with Horn [14, 1905] being
another early contributor. Hille does not mention Dulac’s claim about one of the
Hilbert problems, however, and indeed that claim was mistaken [15]. It appears that
the error was related to a subtlety in the interpretation of psi series in the complex
plane [15].

3. Formal Development. The formal development of psi series has a history
that goes back a hundred years or more. All formal developments proceed in a similar
way—one begins with psi series and then determines their coefficients using a recur-
sion. In two of his papers, Hille [11, 12] gave clear and detailed formal developments.
Our derivation is quite similar but is more careful about subtleties such as the choice
of the branch of log, the degrees of the polynomials Pi, Qi, and Ri in (1.2), and the
role of the undetermined constants (C and D in Table 1.1).

Since the Lorenz system (1.1) is autonomous, the choice of the location t0 of
the singularity is arbitrary. For the sake of definiteness and because the primary
interest is in solutions that are real for real t, we may assume �(t0) < 0 and take
η = log(−i(t − t0)) to obtain a branch cut that does not intersect the real axis.
However, nothing changes if t0 is arbitrary and some other branch cut is chosen for
defining η. The choice of branch cut is equivalent to the choice of b in Definition 1.1.

The form of the singularity is assumed to be given by (1.2):

(3.1)

x(t) =
∞∑

m=−1

Pm(η)(t−t0)m, y(t) =
∞∑

m=−2

Qm(η)(t−t0)m, z(t) =
∞∑

m=−2

Rm(η)(t−t0)m,

where Pm, Qm, and Rm are polynomials in η. We arrived at this form based on
numerical work summarized in section 5. However, the credit for discovering the form
of the psi series singularities of the Lorenz system belongs for the most part to Tabor
and Weiss [32].

Substituting (3.1) into (1.1) and denoting derivatives with respect to η by a prime,
we get
(3.2a)

∞∑
m=−1

(P ′
m(η)+mPm(η))(t−t0)m−1 = 10Q−2(t−t0)−2+

∞∑
m=−1

(10Qm(η)−10Pm(η))(t−t0)m,
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∞∑
m=−2

(Q′
m(η) + mQm(η))(t − t0)m−1 = 28

∞∑
m=−1

Pm(η)(t − t0)m −
∞∑

m=−2

Qm(η)(t − t0)m

−
∞∑

m=−3

(
m+2∑
j=−1

Pj(η)Rm−j(η)

)
(t− t0)m,(3.2b)

∞∑
m=−2

(R′
m(η) + mRm(η))(t − t0)m−1 = −8

3

∞∑
m=−2

Rm(η)(t− t0)m

+
∞∑

m=−3

(
m+2∑
j=−1

Pj(η)Qm−j(η)

)
(t− t0)m.(3.2c)

For the psi series on either side of (3.2), a nonzero term with m = m1 is greater in
magnitude than an m = m2 term in the limit t → t0 if m1 < m2. Therefore it is
formally consistent to equate powers of (t− t0) in increasing order.

Equating coefficients of (t− t0)−2 in (3.2a) and of (t− t0)−3 in (3.2b) and (3.2c),
we get P ′

−1 − P−1 = 10Q−2, Q′
−2 − 2Q−2 = −P−1R−2, and R′

−2 − 2R−2 = P−1Q−2.
The degree of P−1 and Q−2 in η must be the same, while the degree of R−2 must be
twice that degree, and the degree of Q−2 must be the sum of the degrees of the other
two. The only possibility is for all the degrees to be zero. We get

(3.3) (P−1, Q−2, R−2) = (2i,−i/5,−1/5) or (−2i, i/5,−1/5).

We consider only the first possibility for now but will account for the second possibility
in Lemma 3.2.

The next set of equations is P ′
0 = 10(Q−1−P−1), Q′−1 = Q−1−2iR−1+P0/5+i/5,

and R′
−1 = R−1 + 2iQ−1 − iP0/5 + 8/15. The only solution polynomial in η is given

by

(3.4) (P0, Q−1, R−1) = (71i/9, 2i, 17/9).

For m = 0, 1, 2, . . . , we equate powers of (t − t0)m in (3.2a) and powers of (t −
t0)m−1 in (3.2b) and (3.2c) to get

(3.5) X ′
m = AmXm + Fm(η),

where

Xm =


Pm+1

Qm

Rm


 , Am =


−m− 1 10 0

1
5 −m −2i

− i
5 2i −m


 ,

(3.6)

Fm =


 −10Pm

28Pm−1 −Qm−1 −
∑m

j=0 PjRm−j−1

− 8
3Rm−1 +

∑m
j=0 PjQm−j−1


 .

The eigenvalues of Am are −m + 2, −m, and −m − 3. If the linear system (3.5)
is diagonalized using the eigenvectors of Am as a basis, it turns into three scalar
equations of the form dξ/dη = αξ + f(η) with α being −m + 2 or −m or −m − 3
and with f being a polynomial in each case. If α �= 0, we have a unique polynomial
solution for ξ(η) whose degree is the same as that of f .
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We can have α = 0 if and only if m = 0 or m = 2. Thus if m �= 0 and m �= 2,
we can assert that (3.5) has a unique polynomial solution Xm and the degree of that
solution in η is the same as that of Fm.

In the case m = 0, Fm is a constant and the three scalar equations are of the form
dξ/dη = 2ξ+β1, dξ/dη = −3ξ+β2, and dξ/dη = β3, where the βi are known constants.
The only admissible solution of either of the first two equations is a constant. The last
equation, however, has the solution β3(η +C), where C is an undetermined constant.
If the eigenvectors of A0 are multiplied by the respective solutions and summed, we
get

(3.7)


P1

Q0

R0


 =


−9880i/81

−988i/81
−988/81


 (η + C) +


 0
−349i/81
1385/54


 ,

where the factor multiplying (η +C) is the eigenvector of A0 that corresponds to the
eigenvalue −m = 0.

The matrix Am has a zero eigenvalue again when m = 2. In this case, the degree
of Fm in η is 2. We would expect the polynomial solution Xm of (3.6) to be cubic.
However, the component of Fm along the eigenvector of Am corresponding to the
eigenvalue −m + 2 = 0 is zero (with regard to this point, compare (2.9) of [32]).
Therefore P3, Q2, and R2, which make up X2, are all quadratic in η as shown in
Table 1.1. A new undetermined constant D enters at this stage. If P3, Q2, and
R2 were cubic and not quadratic, �m+2

2 � in the lemma below would be replaced by
�m+2

2 � + �m+2
4 �.

Lemma 3.1. The degrees of the polynomials Pm+1(η), Qm(η), and Rm(η) are at
most �m+2

2 � for m = 0, 1, 2, . . . .
Proof. For m = 0, 1, 2, the lemma can be verified explicitly using Table 1.1. If

the maximum degree of a component of Xk is dk for 0 ≤ k < m, (3.4) and (3.6) imply
that the degree of Fm is at most

max
0≤j≤m

(dj−1 + dm−j−1),

where we assume m ≥ 3 and take d−1 = 0. We use the inductive hypothesis and note

dj−1 + dm−j−1 ≤
⌊
j + 1

2

⌋
+
⌊
m− j + 1

2

⌋
≤
⌊
m + 2

2

⌋

for 0 ≤ j ≤ m to complete the proof. The second inequality above is an equality for
odd j.

It appears as if the degrees in Lemma 3.1 are actually equal to �m+2
2 �. To prove

as much, one has to rule out cancellations that can happen in a variety of ways, which
may or may not be worth the trouble. Below we give a formula for the polynomial
solution Xm of (3.5) that is easily derived using the variation of constants formula
and integration by parts:

(3.8) Xm = −
�m+2

2 	∑
j=0

A−j−1
m

djFm

dηj

for m ≥ 3. The correctness of (3.8) can be verified by direct substitution into (3.5).
The lemma below summarizes the discussion in this section.
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Fig. 3.1 Schematic plot of the location of the singularities in the t-plane for an orbit such as AB.
The singularities are shown as red spots and the branch cuts are dashed. Only singularities
within a single period are shown in the t-plane (compare Figure 1.1).

Lemma 3.2.

(i) For the coefficients Pm+1, Qm, Rm shown in Table 1.1 for −2 ≤ m ≤ 3
and defined for m ≥ 3 by (3.6) and (3.8), the psi series (3.1) (or (1.2))
satisfy the Lorenz system (1.1) formally. The location of the singularity t0 is
arbitrary and two undetermined constants, C and D, occur in the psi series.
The constant C and η always occur in the group (η + C).

(ii) Another formal solution is obtained by flipping the signs of all the P ’s and
the Q’s while leaving the R’s unchanged.

(iii) For the solution to be formally valid, η can be defined as log(b(t− t0)) for any
complex number b with |b| = 1.

Proof. For the part about flipping signs, note that the Lorenz system is unchanged
by the transformation (x, y, z) → (−x,−y, z). More specifically, note that flipping
signs of the P ’s and the Q’s changes the sign of the first two components of Fm in
(3.6) but not that of the third component.

This other formal solution accounts for the second possibility in (3.3).
If the psi series singularity is an analytic continuation of a solution that is real

for real t, the location t0 of the singularity must be off the real line (see section 5).
Accordingly, as �(t0) < 0 or �(t0) > 0, the choices b = −i or b = i give branch cuts
that do not intersect the real line, as shown in Figure 3.1.

4. Proof of Convergence. Hille’s [11] proof of the convergence of psi series so-
lutions relies on the formula

Xm(η) =
∫ η

−∞
e(η−s)AmFm(s)ds

for the solution Xm of (3.5) which is polynomial in η. A similar formula is fundamental
to the approximation of strange attractors, including Lorenz’s, by algebraic sets in
the work of Foias, Temam, and others [8, 9].

Our proof of convergence does not use Hille’s formula but instead relies on the
Laplace transform and other devices. In the second part of this section, we remark
that our technique will likely give simpler proofs for certain theorems of Hille and
Smith. In one instance, our technique can probably be used to prove a theorem that
has been stated but not proved completely.
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4.1. Psi Series Solutions of the Lorenz System. If p is a polynomial in (η+C),
we define |p| as the sum of the absolute values of its coefficients. Since η and C always
occur in the group (η+C), we can think of C as being subsumed by η. |Xm| is defined
as the maximum of |Pm+1|, |Qm|, and |Rm|. For m ≥ 2, |Xm| will depend upon the
undetermined constant D. The key to the proof of convergence of the psi series (3.1)
is a bound of the form |Xm| < K1K

m
2 , where K1 and K2 are positive constants that

depend upon the undetermined parameter D.
For Fm defined by (3.6), |Fm| is the maximum of |·| over its three components,

each of which is a polynomial in (η + C). We begin with the following easy lemma.
Lemma 4.1. For m ≥ 3,

|Fm| ≤ 30 |Xm−1| + 28 |Xm−2| +
m−1∑
j=1

|Xm−j−1| |Xj−1| .

Proof. If p and q are polynomials in η+C, then |pq| ≤ |p| |q| and |p + q| ≤ |p|+ |q|.
Repeated use of those inequalities with the definition (3.6) of Xm and Fm gives

|Fm| ≤ 10 |Xm−1| + 28 |Xm−2| +
m∑

j=0

|Xm−j−1| |Xj−1| .

The lemma results when the j = 0 and j = m terms are moved out of the summation
while using Table 1.1 to note that |X−1| < 10.

For matters related to the existence and uniqueness of the Laplace transform
that arise implicitly in the proof below, see [35]. In the lemma below, we treat only
polynomials in η (assuming C = 0), but the lemma still applies when η and C occur
in the group (η + C) and C �= 0.

Lemma 4.2. Let α be a complex number with |α| > 1 and let f(η) be a polynomial
in η. Let ξ(η) be the polynomial solution of the differential equation

(4.1)
dξ

dη
= αξ + f(η).

If the polynomial f(η) is of degree n, assume |α| ≥ a(n + 1/2) for some a > 1. Then

(4.2) |ξ| ≤ 1
|α|

a

a− 1
|f | .

Proof. Let f(η) = f0 + f1η + · · · + fnη
n. To take the Laplace transform of (4.1),

we multiply (4.1) by e−ηs and integrate from η = 0 to η = ∞. We get

sξ̂(s) − αξ̂(s) = ξ(0) +
f0

s
+

1!f1

s2
+

2!f2

s3
+ · · · +

n!fn

sn+1
.

Rearranging, we have

ξ̂(s) =
ξ(0)
s− α

+
f0

(s− α)s
+

1!f1

(s− α)s2
+ · · · +

n!fn

(s− α)sn+1
.

All terms on the right-hand side above except the first are rewritten using the identity

1
(s− α)sk

=
1

αk(s− α)
− 1

αks
− 1

αk−1s2
− · · · − 1

αsk
.
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In the resulting expression, ξ(0) is chosen to cancel all the 1/(s − α) terms to get a
polynomial solution. We then have

ξ̂(s) = −
n∑

k=0

k!fk

(
1

αk+1s
+

1
αks2

+ · · · +
1

αsk+1

)
(4.3)

= −
n+1∑
k=1

1
sk

(
(k − 1)!fk−1

α
+

k!fk

α2
+ · · · +

n!fn

αn+2−k

)
.(4.4)

The coefficients of ξ(η) are evident from inspecting the summations (4.3) and (4.4).
From the summation (4.3) and the inverse Laplace transform, we get
(4.5)

|ξ| ≤
n∑

k=0

|fk|
(

k!
0! |αk+1|+

k!
1! |αk|+· · ·+ k!

(k − 1)! |α2|+
k!

k! |α|

)
=

n∑
k=0

|fk|
|α|

(
k∑

j=0

k!
j! |αk−j |

)
.

To clarify the calculation that gives (4.5), let us consider the special case dξ/dη =
αξ + ηk. Its unique polynomial solution is ξ = ηk/α− kηk−1/α2 − · · · − k!/αk+1 and
this |ξ| corresponds to the kth term in (4.5).

Next we bound k!/j!
∣∣αk−j

∣∣ for 0 ≤ k ≤ n and 0 ≤ j ≤ k:

k!
j! |αk−j | =

∣∣αj−k
∣∣ k(k − 1) . . . (j + 1)

=
∣∣αj−k

∣∣ (k(j + 1))((k − 1)(j + 2))((k − 2)(j + 3)) . . . L

≤
(
k + j + 1

2 |α|

)k−j

≤
(
k + 1/2

|α|

)k−j

≤
(
n + 1/2

|α|

)k−j

≤ 1/ak−j.

In the second line above, the last factor L is either (k + j + 1)/2 or ((k + j)(k + j +
2)/4). The first inequality in the third line is obtained by applying the inequality
xy ≤ ((x + y)/2)2 repeatedly. The inequality in the last line uses the assumption
|α| ≥ a(n + 1/2) made in the statement of the lemma.

Returning to (4.5), we have

|ξ| ≤ |f |
|α| (1 + 1/a + 1/a2 + · · · ),

which completes the proof.
The inequality in the lemma below is not strict mainly because |Fm| = 0 is not

ruled out.
Lemma 4.3. For m ≥ 8, |Xm| ≤ 192 |Fm| /(m− 2).
Proof. We take the matrix of eigenvectors of Am defined in (3.6) to be

V =


 −5i 10i −5i
−3i/2 i i

1 1 1


 ,

where the columns are ordered to correspond to the eigenvalues −m + 2, −m, and
−m− 3, respectively.
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If (3.5) is rewritten using a similarity transformation that turns Am into a diag-
onal matrix, we get three scalar equations

dξi

dη
= αiξi + fi

for i = 1, 2, 3, where (α1, α2, α3) = (−m+2,−m,−m−3), (f1, f2, f3)′ = V −1Fm, and
Xm = V (ξ1, ξ2, ξ3)′ (the prime denotes transpose).

To apply Lemma 4.2 to each of the scalar equations, we use Lemma 3.1 and take
n = �(m + 2)/2�. In addition, we choose an a > 1 such that

|α1| = |m− 2| ≥ a(m + 3)/2 ≥ a(n + 1/2).

The choice a = 12/11 works for m ≥ 8. Thus we get |ξi| ≤ 12 |fi| / |αi| ≤ 12 |fi| /(m−
2) for i = 1, 2, 3.

We have |fi| ≤ ‖V −1‖∞ |Fm| for i = 1, 2, 3 and |Xm| ≤ ‖V ‖∞ max(|ξ|1 , |ξ|2 , |ξ|3).
Combining the inequalities, we get

|Xm| ≤ 12
m− 2

‖V ‖∞‖V −1‖∞ |Fm| .

The proof is completed by verifying that ‖V ‖∞‖V −1‖∞ = 16.
The lemma below is crucial to showing that the psi series expansions which for-

mally satisfy the Lorenz system by Lemma 3.2 are convergent. Its proof is structured
to be transparent but does not give the best constants.

Lemma 4.4. For positive constants K1 and K2 which depend upon the undeter-
mined constant D of Lemma 3.2, |Xm| < K1K

m
2 for m = 0, 1, 2, . . . .

Proof. By Lemmas 4.1 and 4.3, we have

|Xm| ≤ 30 × 192
m− 2

|Xm−1| +
28 × 192
m− 2

|Xm−2| +
192

m− 2

m−1∑
j=1

|Xm−j−1| |Xj−1|

for m ≥ 8. If we define xm = |Xm| for m = 0, 1, . . . , 7 and, for m ≥ 8,

(4.6) xm = 960xm−1 + 896xm−2 + 32
m−1∑
j=1

xm−j−1xj−1,

then |Xm| ≤ xm (after noting 192/6 = 32 and so on).
Let f(Z) =

∑∞
m=0 xmZm be the generating function of the xm sequence. Using

(4.6), we get

(4.7) f(Z) − (c0 + c1Z + · · · + c7Z
7) = 960Zf(Z) + 896Z2f(Z) + 32Z2f(Z)2.

In (4.7), the constants c0, . . . , c7 account for the fact that the recurrence (4.6) is
valid only for m ≥ 8. They are put in to get x0, x1, . . . , x7 as the coefficients of
Z0, Z1, . . . , Z7, respectively. They can be determined explicitly (compare Table 1.1);
for instance, c0 = x0 = |X0| and c1 = x1 − 960x0 = |X1| − 960 |X0|. Because
|X2| , . . . , |X7| depend upon D, so will c2, . . . , c7.

The implicit function theorem implies the existence of a unique analytic function
with f(0) = x0 that satisfies (4.7)—if all terms of (4.7) are moved to the left and f(Z)
is treated as a variable, the partial derivative of the left-hand side with respect to f is 1
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when Z = 0, thus verifying the derivative condition of the implicit function theorem.
Therefore f(Z) is the generating function of the xm sequence. The bound on xm

given by the lemma follows from the Hadamard–Cauchy root formula for the radius
of convergence of f(Z) around Z = 0. If K2 is taken slightly greater than the inverse
of the radius of convergence and K1 > 0, the bound |Xm| < K1K

m
2 holds for large

enough m. So K1 can be chosen to make the bound hold for every m = 0, 1, 2, . . . .
An explicit lower bound for the radius of convergence in terms of c0, . . . , c7 can be

determined using the implicit function theorem proved by Lindelöf using his majorant
technique [13, p. 63], [20].

We are now ready to prove convergence of the formal psi series of Lemma 3.2.
Theorem 4.5. Consider the formal psi series of Lemma 3.2 with η = log(b(t−t0))

and |b| = 1. The branch cut is the segment

{t0 − b̄p|p ≥ 0}.
Then the psi series expansions for x(t), y(t), and z(t) given by (1.2) or (3.1) con-
verge uniformly and absolutely on the disc |t− t0| ≤ r with r > 0 and with an open
neighborhood of the branch cut excluded from the disc. In general, r will depend upon
both C and D, which are the two undetermined constants in the psi series.

Proof. We will give the proof for z(t). The proofs for x(t) and y(t) are similar.
Excluding a neighborhood of the branch cut means that a neighborhood of t0 is

excluded from the domain of convergence. Therefore R−2(t− t0)−2 and R−1(t− t0)−1

are both bounded on the domain of convergence. The other reason for excluding a
neighborhood of the branch cut is to ensure that η is well defined.

By the definitions of |Rm| and |Xm| given at the beginning of this section,

|Rm(η)(t − t0)m| ≤ |Rm|max
(

1,
∣∣log b(t− t0) + C

∣∣�(m+2)/2	)|t− t0|m

≤ |Xm|max
(

1,
∣∣log b(t− t0) + C

∣∣�(m+2)/2	) |t− t0|m

< K1K
m
2 max

(
1,
∣∣log b(t− t0) + C

∣∣�(m+2)/2	) |t− t0|m ,

where m ≥ 0 and |b| = 1. The first inequality above uses Lemma 3.1 and the third
inequality uses Lemma 4.4.

Choosing an r > 0 such that

(4.8) r < 1/K2 and r(|log r| + π + |C|) < 1/K2

is sufficient to ensure uniform and absolute convergence. The π in (4.8) is explained
by the inequality |log b(t− t0)| ≤ |log |t− t0|| + π. A choice of r in accord with (4.8)
suffices for the convergence of the psi series for x(t) and y(t) as well.

A further argument is required to show that the convergent psi series actually sat-
isfy the differential equation, a point that seems to have been overlooked on occasion.
When the psi series for x(t), y(t), and z(t) are substituted into the Lorenz system
(1.1), the summation and multiplication of psi series on the right-hand side is justi-
fied by standard results on rearrangements of absolutely convergent series. To justify
the differentiation of psi series on the left-hand side, we mention that the uniform
convergence of a sequence of analytic functions on an open set implies the uniform
convergence of the derivatives on any compact subset of that open set [28, Theorem
10.28]. We can now state the following theorem.

Theorem 4.6. The psi series for x(t), y(t), and z(t) given by (1.2) or (3.1),
whose formal validity is asserted by Lemma 3.2, satisfy the Lorenz system (1.1) in
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the disc |t− t0| ≤ r, with the branch cut excluded, for some r > 0. In general, r
will depend upon both C and D, which are the two undetermined constants in the psi
series.

Levine and Tabor [19] raised the possibility that the locations of the singularities
of an orbit of the Lorenz system may have accumulation points in the complex t-plane.
Theorem 4.6 shows that psi series singularities cannot be accumulation points.

So far, in results such as Lemma 3.2 and Theorem 4.6, we have regarded the
psi series as functions of t. It is useful to consider them as functions of η, where
η = log b(t − t0) gives a parametrization of the Riemann surface that gets rid of the
branch cut in the t-plane. To be specific, we assume �(t0) < 0 and b = −i. In that
case, we have (t− t0) = i exp(η), and the psi series (3.1) take on the form

x(η) =
∞∑

m=−1

imPm(η)emη, y(η) =
∞∑

m=−2

imQm(η)emη, z(η) =
∞∑

m=−2

imRm(η)emη

(4.9)

with Pm, Qm, Rm being polynomials in which η always occurs in the group (η + C).
Every time t passes through the branch cut of log(−i(t− t0)), η increases or decreases
by 2πi. Because η and C always occur in the group (η + C) in Pm, Qm, Rm, we can
allow for other branches of log(−i(t− t0)) in the psi series of (3.1) or (1.2) by keeping
the principal branch of the logarithm in the definition of η and incrementing C by an
integer multiple of 2πi. The change in the estimate for the radius of convergence r of
Theorem 4.6 for these other branches will then be in accord with (4.8). (Note that
K2 depends only on D.)

If the domain of convergence of the transformed psi series (4.9) is considered
in the η-plane, the choice of the principal branch of log(−i(t − t0)) implies −π <
�(η) ≤ π, and the r estimated by Theorem 4.6 implies �(η) ≤ log r. Thus the
region of convergence of the principal branch will be a semi-infinite rectangle in the
η-plane. To pass to other branches, we keep C fixed and allow the imaginary part of
η to be arbitrary. For η corresponding to different branches, one has to use different
estimates for r as explained in the previous paragraph. Therefore the estimated
domain of convergence of the transformed psi series (4.9) will be a union of semi-
infinite rectangles as in Figure 4.1. If we start at the principal branch of log(−i(t−t0))
and cross its branch cut m times, then by (4.8) r ≈ 1/(K22π |m|) for large integers m.
For such a branch −π+2πm < �(η) ≤ π+2πm and �(η) � − log |m| for convergence,
which gives an approximate idea of the shape of the domain sketched in Figure 4.1.

4.2. Remarks on Theorems of Hille and Smith. In [12], Hille proved that the
plane quadratic system

dx/dt = x(a0 + a1x + a2y),
dy/dt = y(b0 + b1x + b2y)

has a logarithmic psi series singularity if (a1 − b1)(a2 − b2)/(a1b2 − a2b1) is a positive
integer. Smith [30] generalized that result to plane polynomial systems. Smith’s proof
is based on a reduction to results proved early in the 20th century for Briot–Bouquet
systems. These results are summarized in sections 12.5 and 12.6 of Hille’s book [13].

One difference between the results of Hille and Smith for plane polynomial systems
and Theorem 4.6 is as follows. The singular solutions for plane polynomial systems
look like simple poles near the singular point. The singularities of the Lorenz system
implied by Theorem 4.6 look like double poles.
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�(η)

�(η)

Fig. 4.1 Schematic plot of domain of convergence of the psi series in the η plane, as implied by
Theorem 4.5. The shape of the region is given approximately by �(η) � − log |m| for
integers m of large magnitude and −π + 2πm < �(η) ≤ π + 2πm.

In [11], Hille proved the existence of logarithmic psi series solutions for the
Emden–Fowler system d2y/dt2 = t−2/py1+2/p for p = 2. At the end of the paper,
Hille discussed the difficulty of extending his technique and noted remarks by a ref-
eree suggesting a proof of existence of logarithmic psi series solutions for positive
integral 2p. Like Smith’s proof for plane polynomial systems, the suggested proof
goes through a reduction to a Briot–Bouquet system, but no complete proofs are
found in the literature as far as we are aware. The result for positive integral 2p
was stated as Theorem 12.4.2 in Hille’s book [13]. Hille mentioned that “the various
proofs are nasty” and omitted them.

The proofs using reduction to Briot–Bouquet systems are difficult to follow in
their entirety, partly because they depend so crucially on results proved long ago.
It appears that use of the Laplace transform and the implicit function theorem will
give simpler proofs for plane polynomial systems and complete proofs that are not so
“nasty” in the case of the Emden–Fowler system with 2p a positive integer.

Theorem 4 of Smith’s paper [30] states that all singularities of real solutions of
certain plane polynomial systems must be of the form determined in Theorem 3 of
that paper. The statement occurs again as Theorem 12.6.3 of [13]. Smith’s proof
begins with an ingenious change of variables. Near the end of the proof, we find the
argument “in the case when λ > 0, the arbitrary constant c in (20) can be chosen
to fit this solution ζ(ξ) in the neighborhood of ξ = 0.” We are unable to follow that
argument and believe it requires substantial explication at the very least.

5. Complex Singularities and the Lorenz Attractor. If t = t0 is a singularity
of the Lorenz system (1.1), the solution must diverge to infinity as the singularity is
approached.

Theorem 5.1. Let γ be a Lipschitz curve in the complex t plane that approaches
t0 at one of its two endpoints. Let (x(t), y(t), z(t)) be a solution of the Lorenz system
(1.1) defined for t ∈ γ. If t0 is a singular point, then

(5.1) lim inf
t→t0

|t− t0|
(
|x(t)| + |y(t)| + |z(t)|

)
≥ 1

8
,

as t approaches t0 along the curve γ.
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Proof. Denote |x(t)|+ |y(t)|+ |z(t)| by rt. Consider the set of all complex (x, y, z)
in the region |x− x(t)| + |y − y(t)| + |z − z(t)| < b for some b > 0. Then the sum of
the absolute values of the right-hand sides of the Lorenz system (1.1) is bounded by

M = 52(rt + b) + 2(rt + b)2,

where 10 + 10 + 28 + 1 + 8/3 < 52 explains the first coefficient.
Theorem 8.1, Chapter 1, of [1] (also see Theorem 2.3.1 of [13]) with a = ∞ and

M and b as above implies that the solution admits a unique analytic continuation to
all t′ in the disc |t′ − t| ≤ R with

R =
b

52(rt + b) + 2(rt + b)2
.

Taking b = rt, we get R = 1/(104 + 8rt).
Being a singular point, t0 must lie outside the disc of analyticity. Therefore

|t0 − t| (104 + 8rt) > 1. Taking the limit t → t0 along points on γ completes the
proof.

The curve γ is assumed to be Lipschitz to ensure uniqueness of the solution.
Theorem 5.1 proves that as the singular point t0 of the Lorenz system is ap-

proached, the magnitude of the solution must diverge at a rate that is at least as
great as 0.125/ |t− t0|. In fact, if the answer to Question 1.1 is yes and the singular-
ities of the Lorenz system are all given by psi series of the form (1.2), the divergence
would be proportional to 1/ |t− t0|2.

Theorem 5.1 is used to prove the theorem below.
Theorem 5.2. Consider a trajectory of the Lorenz system (1.1) which is real

for real values of t. In particular, assume that the state (x(0), y(0), z(0)) at t = 0 is
real. Then there is no singularity at any finite and real value of t and the solution is
defined for all real values of t.

Proof. Let Q = x2 + y2 + z2. From (1.1), we have

dQ/dt = 2(−10x2 − y2 − 8z2/3 + 38xy).

The matrix 1-norm of the symmetric form on the right-hand side is bounded by 58
and so are the magnitudes of its eigenvalues. Therefore, |dQ/dt| < 58Q and

Q(t) ≤ Q(0) + 58
∫ |t|

0

Q(s)ds.

At this point it appears as if the proof can be completed using the Gronwall inequality
(Theorem 1.6.6 of [13]) to deduce that Q(t) ≤ Q(0) exp(58 |t|). However, the bound
on Q(t) holds only if we assume the existence of the solution, which is what we set
out to prove.

In circumstances such as these, oscillatory singularities for which the solution
does not tend to a limit as the singular point is approached must be ruled out—
an important point that goes back to Painlevé [13, Chapter 3]. Theorem 5.1 forces
the norm of the solution to diverge near a singular point thus making it possible to
complete the proof.

Theorem 5.2 is implied by Theorem 2.4(i) of [8]. In fact, Theorem 2.4 of [8] is a
sharper result as it implies that Q(t) ≤ C exp(20 |t|) for some constant C independent
of t. We have given a proof that brings out the connection to the nature of the singular
points.
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Table 5.1 Imaginary parts of the singular points closest to the real line in the t-plane.

AB ±i0.1714501006
AAB ±i0.1617621257

AAAB ±i0.1563426260
AABB ±i0.1636066901

So far we know that the Lorenz system has singularities represented by logarithmic
psi series and that the solution must diverge as a singularity is approached. But do
solutions such as the one shown in Figure 1.1 have complex singularities and are they
represented by psi series?

Using numerical methods based on [26], we found the complex singularities closest
to the real line of a few solutions listed in Table 5.1. Those solutions, of course, are all
real for real t. They are assigned the labels AB, AAB, AAAB, and AABB following
the convention explained in the caption to Figure 1.1. From Table 5.1, we see that
the complex singularities are located at a distance greater than 0.037 from the real
line, in agreement with Theorem 2.3 of Foias et al. [8]. In addition to computing
the location of the singularities, we have verified numerically that their form matches
the formal development of psi series given in section 3. This numerical work will be
described in detail elsewhere.

6. Conclusion. Given that the Lorenz system (1.1) has resisted mathematical
analysis on the real line, one may say that it is natural to think of t as a complex
variable and x, y, z as analytic functions of t. When the solutions of the Lorenz system
are viewed as analytic functions, it is natural to begin their investigation by looking
at their singularities. We have given a complete formal development of singularities
in the complex t-plane, proved convergence of the psi series representations using a
new technique, and proved that the psi series indeed satisfy the Lorenz system. The
development of the analytic theory appears to be a fascinating avenue for further
investigations.

The geometrical theory of differential equations, in which the Lorenz system is a
famous example, sprang out of problems in analytic function theory—a fact that is
not well known. More specifically, the stable manifold theorem, which is undoubtedly
fundamental to the geometrical theory, was first proved to understand the solution of
dz/dw = P (z, w)/Q(z, w) in a neighborhood of z = w = 0 when P and Q are bivariate
polynomials with P (0, 0) = Q(0, 0) = 0 [13, p. 97], [27]. Thus our suggestion that
the mathematical analysis of the Lorenz system (1.1) could be a problem in analytic
function theory is an attempt to complete the circle.

The properties of analytic functions x(t) which satisfy the nonlinear Riccati equa-
tion dx/dt = f0(t)+f1(t)x+f2(t)x2, where the fi(t) are rational in t, is a well-studied
topic. All the movable singularities of the Riccati equation are poles and the depen-
dence of its solution on the undetermined constant is given by a fractional linear
transformation. For the Lorenz system some of the movable singularities have psi
series representations of the form determined in section 4. The dependence of these
psi series solutions on the undetermined constants is much more complicated than for
the Riccati equation.

Another well-studied topic is the classification of second order nonlinear systems
all of whose movable singularities are poles. The Painlevé classification has been
presented with lexicographic thoroughness by Ince [16]. There appear to be few
classification results for third order systems such as the Lorenz system. Studying a
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specific system will probably sidestep many difficulties of the classification problem.
In any event, the movable singularities of the Lorenz system are not poles.
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(1921), pp. 1–80.
[24] S. Melkonian and A. Zypchen, Convergence of psi series solutions of the Duffing equation

and the Lorenz system, Nonlinearity, 8 (1995), pp. 1143–1157.
[25] F.W.J. Olver, Asymptotics and Special Functions, 2nd ed., A.K. Peters, New York, 1997.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

314 DIVAKAR VISWANATH AND SÖNMEZ ŞAHUTOĞLU
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