
Using Application Communication Characteristics to Drive Dynamic MPI
Reconfiguration

Manjunath Gorentla Venkata, Patrick G. Bridges, and Patrick M. Widener
Department of Computer Science

University of New Mexico
Albuquerque NM 87131

{manjugv,bridges,pmw} @cs.unm.edu

Abstract

Modern HPC applications, for example adaptive mesh
refinement and multi-physics codes, have dynamic communi-
cation characteristics which result in poor performance on
current MPI implementations. Current MPI implementations
do not change transport protocols or allocate resources
based on the application characteristics, resulting in de-
graded application performance. In this paper, we describe
PRO-MPI, a Protocol Reconfiguration and Optimization
system for MPI that we are developing to meet the needs
of dynamic modern HPC applications. PRO-MPI uses pro-
files of past application communication characteristics to
dynamically reconfigure MPI protocol choices. We show that
such dynamic reconfiguration can improve the performance
of important MPI applications significantly when exact com-
munication profiles are known. We also present preliminary
data showing that profiles from past application runs with
different (but related) inputs can be used to optimize the
performance of later application runs.

1. Introduction

Emerging HPC applications such as adaptive mesh refine-
ment (AMR) and multi-physics codes have dynamic com-
munication characteristics that pose challenges for modern
message passing libraries. For example, both the number
of communicating processes and the size of messages can
vary widely over the course of a single run in applications
built using SAMRAI, a MPI adaptive mesh library [1].
HPC applications such as HyperCLaw [2], Sweep3D, and
Sphot [1] also exhibit similar communication characteristics.

Current MPI implementations are not designed to handle
dynamic changes in application communication behavior.
Modern MPI implementations, for example, choose between
either one-sided (RDMA) or two-sided (Send-Receive) com-
munication protocols, depending on the number of com-
munication peers each process is expected to have. When
the chosen protocol does not match the communication
characteristics of an application, performance suffers: either
memory management and polling overheads increase, or

network round-trip latencies do. Furthermore, if the num-
ber of peers varies widely, as it does in the applications
mentioned above, any static protocol choice will cause these
performance issues for at least a portion of the application’s
execution.

To address these problems, we are developing Protocol
Reconfiguration and Optimization for MPI (PRO-MPI), a
system for improving the performance of parallel appli-
cations with dynamic communication characteristics. PRO-
MPI uses profiles of past application communication be-
havior as a basis for dynamic reconfigurations of message
passing functionality to better suit expected application
communication requirements. Our current prototype focuses
on dynamically changing which connections use one-sided
and two-sided communication protocols over the course
of an application run, reducing both polling overheads
and network protocol overheads. We demonstrate that such
protocol reconfiguration can improve the performance of
important AMR applications, and present preliminary data
demonstrating that communication profiles collected from
one application run can be used to improve the performance
of later application runs with different (but related) inputs.

The rest of the paper is structured as follows. Section 2
provides basic background on the Open MPI MPI imple-
mentation on which PRO-MPI is currently implemented,
as well as the high-performance message passing strategies
that PRO-MPI reconfigures between to improve application
performance. Section 3 presents the design of our system,
its prototype implementation in Open MPI, and an example
reconfiguration we have implemented. Section 4 presents
experimental results demonstrating PRO-MPI’s ability to
improve application performance by adapting to changing
application communication characteristics, and Section 5
discusses related work. Finally, Section 6 presents directions
for future work and concludes.
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2. Background

2.1. Open MPI

Open MPI is a MPI implementation that uses a well-
defined component architecture, the MPI Component Archi-
tecture (MCA) [3]. Communication functionality in MCA is
provided by self-contained software modules that support
well-defined interfaces. For example, MCA defines inter-
faces for implementing different collective communication
algorithms and supporting different network interfaces, al-
lowing Open MPI to be customized to run on a wide range
of platforms.

Open MPI uses the modules at the PML (point-to-point
messaging layer) and BTL (byte-transfer layer) to support
point-to-point communication over specific networking hard-
ware. The BTL provides an interface for moving bytes
over a given communication fabric, for example shared
memory, Ethernet, or Infiniband. The PML provides higher-
level services such as message fragmentation and reassembly
and matching necessary to support the MPI interface over
a given BTL layer. Our work has focused primarily on
optimizing the the use of OpenIB BTL, a BTL module that
transfers data over Infiniband links using OpenIB’s verbs
interface.

2.2. Infiniband Communication Protocols

Infiniband supports two different protocols for small-
message transfer:

1) A two-sided send-recv protocol in which the receiver
posts a set of receives and waits for notification that
any of them are complete by polling a single event
queue, and

2) A one-sided RDMA protocol in which each sender has
direct remote access to a memory buffer in which to
place messages, and the receiver is notified by polling
receive buffers.

RDMA protocols allow for lower network protocol latencies,
but polling costs can overwhelm these savings when many
RDMA connections are used.

3. PRO-MPI Design and Implementation

3.1. Design and Prototype Implementation

To support profile-based protocol reconfiguration and op-
timization, PRO-MPI supplements standard MPI implemen-
tations with three additional elements. A profiler collects
information about application communication characteristics
into a communication profile for later use; an analyzer uses
globally collected profiling information to generate sched-
ules for driving reconfiguration in later application runs; and
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Figure 1: PRO-MPI components and their use to control a
prototype protocol reconfiguration

a reconfiguration manager dynamically changes communi-
cation settings based on previously generated schedules1.

We have implemented a prototype version of PRO-MPI,
shown in Figure 1, as an extension to the Open MPI MPI
implementation. In this implementation, the runtime PRO-
MPI elements, the profiler and reconfiguration manager,
are part of Open MPI framework that interact with exist-
ing layers to implement profiling and reconfiguration. At
this point, we have focused on using them to reconfigure
communication at the Open MPI BTL layer, as described
below; our implementation, however, is designed to allow
other reconfigurations, for example of Open MPI collective
communication modules.

3.2. Example Reconfiguration

Using PRO-MPI, we have prototyped a protocol reconfig-
uration designed to improve the performance of applications
that dynamically change how many and with which peers
they communicate frequently at runtime. Specifically, we
have implemented connection-protocol adaptation between
one-sided and two-sided communication protocols at the
Open MPI BTL layer based on profiles gathered from
previous application runs. In this reconfiguration, the PRO-
MPI profiler gathers information about how often a process
communicates with each peer during application-indicated
phases. We also added a one line call to each application to
indicate to PRO-MPI when a new application phase begins
(phases could also potentially be inferred from application
behavior, for example calls to MPI_barrier).

1. While the profiler, analyzer, and reconfiguration manager could poten-
tially interact at runtime without the need for off-line static profile analysis,
this potentially adds global monitoring, analysis, and synchronization
overheads that may be difficult to recover.
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In subsequent runs on related (but not necessarily iden-
tical) inputs, the reconfiguration manager controls which
BTL communication protocol is used to communicate with
each peer in each application phase using a schedule gener-
ated from the profiling information. This allows PRO-MPI
to dynamically control which peers use RDMA channels,
improving overall application performance as described in
Section 4.

The profiling information and analysis needed for this
reconfiguration is relatively simple. Specifically, the profiler
gathers the number of small messages sent to each peer
by each process during each indicated application phase.
The analyzer uses the profile information to generate a
priority matrix as well as the maximum number of RDMA
connections allowed for each process (maxRDMA). The
3-dimensional priority matrix contains the communication
priority between any two MPI processes during each appli-
cation phase; specifically element p[i][j][k] of the priority
matrix contains the priority of communication from process
i to j at application phase k.

The reconfiguration manager initiates, resets and manages
RDMA connections based on data in the priority matrix
generated by the analyzer from profiling information. At
a given application time step, two MPI processes p (the
initiator) and q may be connected via RDMA if the priority
of that connection is higher than other MPI processes, and
the current number of RDMA connections p is less than
maxRDMA. Figure 2 shows how connections could be
reconfigured between between MPI process i and other MPI
processes over an application run when maxRDMA = 2.

The reconfiguration manager also controls how the com-
munication protocol of a MPI process is switched between
RDMA and Send-Receive. At each reconfiguration point,
all RDMA connections change state from CONNECTED
to QUIESCE. In the QUIESCE state, RDMA connections
cannot be used for any new message transfers. After all
pending messages are transferred, the resources allocated
to the connection are freed and the RDMA connection state
is changed to DISCONNECTED. The connection state for
a process is changed back to CONNECTED only after the
process establishes a new RDMA connection to another MPI
process.

4. Evaluation

4.1. Overview

To demonstrate the capabilities of PRO-MPI we ran
experiments to measure the impact of profile-based proto-
col reconfiguration on both synthetic microbenchmarks and
application performance. Our experimental platform is a 22-
node SGI Altix ICE system with an Infiniband interconnect.
Each compute node has 2 3.0GHz Intel Xeon processors,

16GB of memory, and runs SUSE Linux with kernel version
2.6.16 and OpenFabric’s OpenIB network stack.

We tested PRO-MPI using synthetic communication
benchmark and several application frameworks. The syn-
thetic benchmark can dynamically change which peers it
communicates with, how many message it exchanges with
each peer, and how big each messages is. The application
frameworks we tested were:

• SAMRAI, a popular C++ software framework de-
veloped to implement parallel adaptive multi-physics
applications. In our experiments, we ran SAMRAI’s
spherical shock wave problem for 10 time steps with
the coarsest domain fixed to [40, 40, 40] and varying
refinement levels.

• HyperCLaw, a hybrid C++/Fortran AMR code devel-
oped and maintained by Lawrence Berkeley National
Laboratory. Our experiments used an AMR gas dynam-
ics application data set which models the interaction of
a Mach 1.25 shock in air hitting a helium bubble for
10 time steps with base grid of size [32, 8, 8].

Each test was run in three modes: using native Open MPI,
using PRO-MPI to collect communication profile informa-
tion under low mesh refinement conditions (3 for SAM-
RAI, 2 for HyperCLaw), and using that collected profile
information to drive PRO-MPI’s reconfiguration decisions;
reconfiguration decisions are made at reconfigurable points
which, in these tests, are application time steps. We also
used the low-refinement profiles to drive reconfiguration for
a set of high mesh refinement runs (4 for SAMRAI, 3 for
HyperCLaw).

4.2. Synthetic Benchmark Results

To understand and estimate the performance benefits of
using connection-protocol reconfiguration, we implemented
a synthetic benchmark that imitates changing communica-
tion characteristics of an application, and then compared
its performance while using profiled PRO-MPI and Open
MPI. In these experiments, the benchmark used a profile
that exactly characterized the changing communication char-
acteristics to drive PRO-MPI ’s reconfiguration so as to
measure the best-case performance improvement that PRO-
MPI could expect.

Figure 3(a) shows the impact of connection-protocol re-
configuration on the benchmark’s runtime as the number
of processes participating in the communication increases,
while Figure 3(b) shows the impact of reconfiguration when
the number of messages sent by each process increases. As
expected, protocol reconfiguraion increases in effectiveness
with both increasing number of processes and messages sent
per process, with 40% or greater benchmark performance
improvements over OpenMPI’s static choice of connections
to send-receive or RDMA protocol.
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Figure 2: Example connection reconfiguration between RDMA and Send-Receive connections. The nodes in the figure
represent MPI processes, while the number on the edges represent the communication priority of the processes during an
application phase.
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(a) Increasing number of processes where each process sends 1000
msgs of size 1kB
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(b) Increasing messages sent per process in a 32-process problem

Figure 3: PRO-MPI performance improvement over Open MPI on synthetic communication benchmark

4.3. Application Performance with Exact Profiles

To measure PRO-MPI’s potential protocol reconfiguration
impact on SAMRAI and HyperCLaw applications at differ-
ent node counts, we compared the performance of Open
MPI runs and profiled PRO-MPI runs of these applications
at low refinement levels on 16, 32, and 64 nodes. Low mesh
refinement levels were used both to limit application runtime
and because runtimes from high refinement runs have high
standard deviation in our experiments. Each test was run 5
times.

Figure 4 shows the performance impact of reconfiguration

on SAMRAI and HyperCLaw problems with exact perfor-
mance profiles. SAMRAI performance is improved by 5.5%
for a 64 process problem, and the performance improve-
ment increases as the number of processes in the problem
increases. Similarly, HyperCLaw performance improves by
2.7% for the 64 process problem, and the performance im-
provement increases slowly with increasing process counts.
We also observe from table 1 that performance improvement
increases with different input data sets, specifically, increas-
ing the refinement.
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Figure 4: Performance improvement using PRO-MPI with exact profiles.

Testcase Runtime (sec) %Diff.
Open MPI PRO-MPI

HyperCLaw 846±50 716±43 16±10
SAMRAI 391±1 387±1 2

Table 1: Performance improvement using profile collected
at low mesh refinement (3 for SAMRAI, 2 for HyperCLaw)
to optimize communication in application run with higher
mesh refinement (4 for SAMRAI, 3 for HyperCLaw) on 32
nodes. Numbers represent the average of 5 runs.

4.4. Application Performance with Inexact Profiles

Because exact profiles may not be available or may be
difficult or time-consuming to produce, we have also done
preliminary work studying how profiles from one run can
be used to improve the performance of an application on
related input data.

Table 1 shows that performance profiles collected from
lower-refinement runs can be used to substantially improve
the performance of more time-consuming high-refinement
runs. Specifically, profiles from refinement 2 HyperCLaw
runs can be used to improve the performance of refinement 3
HyperCLaw runs by approximately 16%; we also observed
performance improvement in SAMRAI runs, though more
modest ones than those observed in HyperCLaw. Finally,
we note that the standard deviation of the preliminary
HyperCLaw numbers is high.

4.5. Analysis

To understand the source of the performance observed
improvements we profiled the communication characteristics
of the applications while they used PRO-MPI and Open
MPI for communication. On 64 nodes, HyperCLaw sends

up to 20% RDMA messages when using PRO-MPI and
up to 1% when using Open MPI with the same number
of allowed RDMA connections. Similarly, SAMRAI sends
13 times more RDMA messages when using PRO-MPI
instead of Open MPI with the same number of RDMA con-
nections. This demonstrates that PRO-MPI’s performance
improvements are the result of more efficient use of RDMA
connections compared to random assignment of RDMA
connections to peers.

Although using PRO-MPI for communication has perfor-
mance benefits, it adds overhead of creating and destroying
RDMA connections at every reconfiguration point. Also,
using RDMA requires dedicated memory buffers and a
certain amount of polling overhead. Our results show that
these overheads can be amortized when sufficient messages
are exchanged between processes during each application
phase. Also, applications can realize significant performance
benefits while still using a relatively low maxRDMA value
in order to limit both memory usage and polling overhead.
For our tests, we used maxRDMA = 4; attempting to use
more RDMA connections (e.g. maxRDMA = 8) did not
improve application performance in tests we ran.

5. Related Work

The use of profiling, reconfiguration, and adaptation to
improve application performance has been an area of active
research. Adaptive MPI [4] and Maghraoui [5] both used
adaptation and reconfiguration to improve load balancing
for MPI applications, for example, while we have shown
in previous work [6] how reconfiguration can be used to
improve bandwidth availability. Other systems have shown
that profile data can be used for optimizing MPI performance
at link time or launch, STAR-MPI [7] for selecting appro-
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priate collective communication algorithms and HP-MPI [8]
for placing MPI processes in a system. In contrast, our work
uses profile data for fine-grained runtime reconfiguration and
also provides a framework that can be used to implement
other similar reconfigurations.

There have also been several efforts which use dy-
namic connection management to improve application per-
formance. Yu [9] uses adaptive connection management to
create RDMA connections on demand, but created connec-
tions in this system are never reset or torn down if they
become idle; Shipman [10] describes a similar connection
management strategy for Open MPI. In applications with
dynamic communication characteristics, both of these ap-
proaches would use significantly more resources than our
approach, as every created RDMA connection occupies
memory and would need to be polled for message avail-
ability.

6. Conclusions and Future Work

In this paper, we show that using the communication
characteristics of HPC applications to drive reconfiguration
can improve the performance of those applications. Our
PRO-MPI framework collects profile information about the
communication characteristics of MPI-based applications
and uses those profiles to drive connection-protocol recon-
figuration. We have demonstrated that PRO-MPI improves
performance both in an application built using the SAMRAI
adaptive-mesh library and the HyperCLaw application. Our
results also show that PRO-MPI can improve performance
even in cases when profiles derived from application runs
with different input sets are used to drive reconfiguration.

We think it will be increasingly important to consider the
dynamic characteristics of emerging HPC applications while
designing HPC system software. To this end, we first intend
to study the impact of profile-based reconfiguration, using
various input sets and problem sizes, on SAMRAI-based
codes, HyperCLaw and other similar HPC applications.
Second, we will work to identify architecture and design
areas of current MPI implementations that will present
performance challenges for emerging HPC applications. We
will also improve the design and implementation of PRO-
MPI and enhance its support for additional reconfigurations.
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