
Steward: Scaling Byzantine Fault-Tolerant
Replication to Wide Area Networks

Yair Amir, Member, IEEE, Claudiu Danilov,

Danny Dolev, Senior Member, IEEE, Jonathan Kirsch, Student Member, IEEE,

John Lane, Member, IEEE, Cristina Nita-Rotaru, Senior Member, IEEE,

Josh Olsen, Student Member, IEEE, and David Zage, Student Member, IEEE

Abstract—This paper presents the first hierarchical Byzantine fault-tolerant replication architecture suitable to systems that span

multiple wide-area sites. The architecture confines the effects of any malicious replica to its local site, reduces message complexity of

wide-area communication, and allows read-only queries to be performed locally within a site for the price of additional standard

hardware. We present proofs that our algorithm provides safety and liveness properties. A prototype implementation is evaluated over

several network topologies and is compared with a flat Byzantine fault-tolerant approach. The experimental results show considerable

improvement over flat Byzantine replication algorithms, bringing the performance of Byzantine replication closer to existing benign

fault-tolerant replication techniques over wide area networks.

Index Terms—Fault tolerance, scalability, wide area networks.

Ç

1 INTRODUCTION

DURING the last few years, there has been considerable
progress in the design of Byzantine fault-tolerant

replication systems. Current state-of-the-art protocols per-
form very well on small-scale systems that are usually
confined to local area networks, which have small latencies
and do not experience frequent network partitions. How-
ever, current solutions employ flat architectures that have
several limitations: message complexity limits their ability
to scale, and strong connectivity requirements limit their
availability on wide area networks (WANs), which usually
have lower bandwidth, have higher latency, and exhibit
more frequent network partitions.

This paper presents Steward [1], the first hierarchical

Byzantine fault-tolerant replication architecture suitable for

systems that span multiple wide-area sites, each consisting

of several server replicas. Steward assumes no trusted

component in the entire system other than a mechanism to

predistribute private/public keys.

Steward uses Byzantine fault-tolerant protocols within
each site and a lightweight, benign fault-tolerant protocol
among wide-area sites. Each site, consisting of several
potentially malicious replicas, is converted into a single
logical trusted participant in the wide-area fault-tolerant
protocol. Servers within a site run a Byzantine agreement
protocol to agree upon the content of any message leaving
the site for the global protocol.

Guaranteeing a consistent agreement within a site is not
enough. The protocol needs to eliminate the ability of
malicious replicas to misrepresent decisions that took place
in their site. To that end, messages between servers at
different sites carry a threshold signature attesting that
enough servers at the originating site agreed with the
content of the message. This allows Steward to save the
space and computation associated with sending and verify-
ing multiple individual signatures. Moreover, it allows for a
practical key management scheme where all servers need to
know only a single public key for each remote site and not
the individual public keys of all remote servers.

Steward’s hierarchical architecture reduces the message
complexity on wide-area exchanges from OðN2Þ (N being
the total number of replicas in the system) to OðS2Þ (S being
the number of wide-area sites), considerably increasing the
system’s ability to scale. It confines the effects of any
malicious replica to its local site, enabling the use of a benign
fault-tolerant algorithm over the WAN. This improves the
availability of the system over WANs that are prone to
partitions. Only a majority of connected sites is needed to
make progress, compared with at least 2f þ 1 servers (out of
3f þ 1) in flat Byzantine architectures, where f is the upper
bound on the number of malicious servers.

Steward allows read-only queries to be performed
locally within a site, enabling the system to continue
serving read-only requests even in sites that are parti-
tioned away. These local queries provide one-copy serial-
izability [2], the common semantics provided by database

80 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

. Y. Amir, J. Kirsch, and J. Lane are with the Department of Computer
Science, Johns Hopkins University, 3400 North Charles Street, Baltimore,
MD 21218. E-mail: {yairamir, jak, johnlane}@cs.jhu.edu.

. C. Danilov is with the Boeing Phantom Works, P.O. Box 3707 MC 7L-49,
Seattle, WA 98124-2207. E-mail: claudiu.b.danilov@boeing.com.

. D. Dolev is with the School of Engineering and Computer Science,
Hebrew University of Jerusalem, Edmond Safra Campus-Givat Ram,
Jerusalem 91904, Israel. E-mail: dolev@cs.huji.ac.il.

. C. Nita-Rotaru and D. Zage are with the Department of Computer Science,
Purdue University, LWSN 2142J, 305 N. University Street, West Lafayette,
IN 47907. E-mail: crisn@cs.purdue.edu, zage@purdue.edu.

. J. Olsen is with the Donald Bren School of Information and Computer
Sciences, University of California, Irvine, 6210 Donald Bren Hall, Irvine,
CA 92697. E-mail: jolsen@ics.uci.edu.

Manuscript received 14 Feb. 2007; revised 8 Feb. 2008; accepted 27 June 2008;
published online 26 Aug. 2008.
For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSCSI-0017-0207.
Digital Object Identifier no. 10.1109/TDSC.2008.53.

1545-5971/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society

products. Serializability is a weaker guarantee than the
linearizability semantics [3] provided by some existing flat
protocols (e.g., [4]). We believe serializability is the desired
semantics in partitionable environments, because systems
that provide linearizability can only answer queries in sites
connected to a quorum. In addition, Steward can guaran-
tee linearizability by querying a majority of the wide-area
sites, at the cost of higher latency and lower availability.

Steward provides the benefits described above by using
an increased number of servers. More specifically, if the
requirement is to protect against any f Byzantine servers in
the system, Steward requires 3f þ 1 servers in each site.
However, in return, it can overcome up to f malicious
servers in each site. We believe this requirement is reason-
able given the cost associated with computers today.

Steward’s efficacy depends on using servers within a site
that are unlikely to suffer correlated vulnerabilities. Multi-
version programming [5], where independently coded
software implementations are run on each server, can yield
the desired diversity. Newer techniques [6], [7] can
automatically and inexpensively generate variation. Stew-
ard remains vulnerable to attacks that compromise an
entire site (e.g., by a malicious administrator with access to
the site). This problem was addressed in [8].

The paper demonstrates that the performance of Steward
with 3f þ 1 servers in each site is much better even
compared with a flat Byzantine architecture with a smaller
system of 3f þ 1 total servers spread over the same wide-
area topology. The paper further demonstrates that Steward
exhibits performance comparable (though somewhat lower)
with common benign fault-tolerant protocols on WANs.

We implemented the Steward system, and a DARPA
red-team experiment has confirmed its practical surviva-
bility in the face of white-box attacks (where the red team
has complete knowledge of system design, access to its
source code, and control of f replicas in each site).
According to the rules of engagement, where a red-team
attack succeeded only if it stopped progress or caused
inconsistency, no attacks succeeded.

The main contributions of this paper are the following:

1. It presents the first hierarchical architecture and
algorithm that scales Byzantine fault-tolerant repli-
cation to large WANs.

2. It provides a complete proof of correctness for this
algorithm, demonstrating its safety and liveness
properties.

3. It presents a software artifact that implements the
algorithm completely.

4. It shows the performance evaluation of the imple-
mentation software and compares it with the current
state of the art. The experiments demonstrate that
the hierarchical approach greatly outperforms exist-
ing solutions when deployed on large WANs.

The remainder of the paper is organized as follows: We
discuss previous work in several related research areas in
Section 2. We provide background in Section 3. We
present our system model in Section 4 and the service
properties met by our protocol in Section 5. We describe
our protocol, Steward, in Section 6. We present experi-
mental results demonstrating the improved scalability of
Steward on WANs in Section 7. We include a proof of
safety and a proof road map of liveness in Section 8. We

summarize our conclusions in Section 9. Appendix A
contains the complete pseudocode for our protocol, and
complete correctness proofs can be found in Appendix B.
The appendices appear in the electronic version of this
paper, available at http://dsn.jhu.edu and from IEEE,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TDSC.2008.53.

2 RELATED WORK

Agreement and consensus. At the core of many replication
protocols is a more general problem, known as the
agreement or consensus problem. A good overview of
significant results is presented in [9]. The strongest fault
model that researchers consider is the Byzantine model,
where some participants behave in an arbitrary manner. If
communication is not authenticated and nodes are directly
connected, 3f þ 1 participants and f þ 1 communication
rounds are required to tolerate f Byzantine faults. If
authentication is available, the number of participants can
be reduced to f þ 2 [10].

Fail-stop processors. Schlichting and Schneider [11] pre-
sent the implementation and use of k-fail-stop processors,
which consist of several potentially Byzantine processors. A
k-fail-stop processor behaves like a fail-stop processor as
long as no more than k processors are Byzantine faulty.
Benign fault-tolerant protocols can thus safely run on top of
these logical processors. Unlike Steward, in which a site is
live unless f þ 1 of its computers fail, the k-fail-stop
processor described in [11] halts when even one of its
constituent processors fails.

Byzantine group communication. Related with our work are
group communication systems resilient to Byzantine failures.
Two such systems are Rampart [12] and SecureRing [13].
Both systems rely on failure detectors to determine which
replicas are faulty. An attacker can slow correct replicas or
the communication between them until a view is installed
with less than two-thirds correct members, at which point
safety may be violated. The ITUA system [14], [15],
developed by BBN and UIUC, employs Byzantine fault-
tolerant protocols to provide intrusion-tolerant group ser-
vices. The approach taken considers all participants as equal
and is able to tolerate up to less than a third of malicious
participants.

Replication with benign faults. The two-phase commit
(2PC) protocol [16] provides serializability in a distributed
database system when transactions may span several sites.
It is commonly used to synchronize transactions in a
replicated database. Three-phase commit [17] overcomes
some of the availability problems of 2PC, paying the price
of an additional communication round. Paxos [18], [19] is a
very robust algorithm for benign fault-tolerant replication
and is described in Section 3.

Replication with Byzantine faults. The first practical
Byzantine fault-tolerant replication protocol was Castro
and Liskov’s BFT [4], which is described in Section 3.
Yin et al. [20] propose separating the agreement compo-
nent that orders requests from the execution component
that processes requests, which allows utilization of the
same agreement component for many different replication
tasks and reduces the number of execution replicas to
2f þ 1. Martin and Alvisi [21] recently introduced a two-
round Byzantine consensus algorithm, which uses

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 81

5f þ 1 servers in order to overcome f faults. This approach
trades lower availability (4f þ 1 out of 5f þ 1 connected
servers are required, instead of 2f þ 1 out of 3f þ 1 as in
BFT), for increased performance. The solution is appealing
for local area networks with high connectivity. While we
considered using it within the sites in our architecture, we
feel that the increased hardware cost outweighs the benefit
of using one less intrasite round. The ShowByz system
of Rodrigues et al. [22] seeks to support a large-scale
deployment consisting of multiple replicated objects.
ShowByz modifies BFT quorums to tolerate a larger
fraction of faulty replicas, reducing the likelihood of any
group being compromised at the expense of protocol
liveness. Zyzzyva [23] uses speculative execution to reduce
the cost of Byzantine fault-tolerant replication when there
are no faulty replicas. Since Zyzzyva employs fewer wide-
area-protocol rounds and has lower message complexity
than BFT, we expect it to perform better than BFT when
deployed on a WAN. However, since Zyzzyva is a flat
protocol, the leader sends more messages than the leader
site representative in Steward.

Quorum systems with Byzantine fault tolerance. Quorum
systems obtain Byzantine fault tolerance by applying
quorum replication methods. Examples of such systems
include Phalanx [24], [25] and Fleet [26], [27]. Fleet provides
a distributed repository for Java objects. It relies on an object
replication mechanism that tolerates Byzantine failures of
servers, while supporting benign clients. Although the
approach is relatively scalable with the number of servers, it
suffers from the drawbacks of flat Byzantine replication
solutions. The Q/U protocol of Abd-El-Malek et al. [28] uses
quorum replication techniques to achieve state machine
replication, requiring 5f þ 1 servers to tolerate f faults. It
can perform well when write contention is low but suffers
decreased throughput when concurrent updates are at-
tempted on the same object.

Alternate architectures. An alternate hierarchical approach
to scale Byzantine replication to WANs can be based on
having a few trusted nodes that are assumed to be working
under a weaker adversary model. For example, these
trusted nodes may exhibit crashes and recoveries but not
penetrations. A Byzantine replication algorithm in such an
environment can use this knowledge in order to optimize
performance. Correia et al. [29] and Verı́ssimo [30] propose
such a hybrid approach, where synchronous trusted nodes
provide strong global timing guarantees. Both the hybrid
approach and the approach proposed in this paper can scale
Byzantine replication to WANs. The hybrid approach
makes stronger assumptions, while our approach pays
more hardware and computational costs.

3 BACKGROUND

Our work requires concepts from fault tolerance, Byzantine
fault tolerance, and threshold cryptography. To facilitate
the presentation of our protocol, Steward, we first provide
an overview of three representative works in these areas:
Paxos, BFT, and RSA threshold signatures.

Paxos. Paxos [18], [19] is a well-known fault-tolerant
protocol that allows a set of distributed servers, exchanging
messages via asynchronous communication, to totally order
client requests in the benign-fault crash-recovery model.
Paxos uses an elected leader to coordinate the agreement
protocol. If the leader crashes or becomes unreachable, the

other servers elect a new leader; a view change occurs,
allowing progress to (safely) resume in the new view under
the reign of the new leader. Paxos requires at least
2f þ 1 servers to tolerate f faulty servers. Since servers
are not Byzantine, only a single reply needs to be delivered
to the client.

In the common case, in which a single leader exists and
can communicate with a majority of servers, Paxos uses two
asynchronous communication rounds to globally order
client updates. In the first round, the leader assigns a
sequence number to a client update and sends a Proposal
message containing this assignment to the rest of the servers.
In the second round, any server receiving the Proposal sends
an Accept message, acknowledging the Proposal, to the rest
of the servers. When a server receives a majority of matching
Accept messages—indicating that a majority of servers have
accepted the Proposal—it orders the corresponding update.

BFT. The BFT [4] protocol addresses the problem of
replication in the Byzantine model where a number of
servers can exhibit arbitrary behavior. Similar to Paxos, BFT
uses an elected leader to coordinate the protocol and
proceeds through a series of views. BFT extends Paxos into
the Byzantine environment by using an additional commu-
nication round in the common case to ensure consistency
both in and across views and by constructing strong
majorities in each round of the protocol. Specifically, BFT
uses a flat architecture and requires acknowledgments from
2f þ 1 out of 3f þ 1 servers to mask the behavior of
f Byzantine servers. A client must wait for f þ 1 identical
responses to be guaranteed that at least one correct server
assented to the returned value.

In the common case, BFT uses three communication
rounds. In the first round, the leader assigns a sequence
number to a client update and proposes this assignment
to the rest of the servers by broadcasting a Pre-Prepare
message. In the second round, a server accepts the proposed
assignment by broadcasting an acknowledgment, Prepare.
When a server collects a Prepare Certificate (i.e., it receives
the Pre-Prepare and 2f Prepare messages with the same
view number and sequence number as the Pre-Prepare), it
begins the third round by broadcasting a Commit message.
A server commits the corresponding update when it receives
2f þ 1 matching commit messages.

Threshold digital signatures. Threshold cryptography
[31] distributes trust among a group of participants to protect
information (e.g., threshold secret sharing [32]) or computa-
tion (e.g., threshold digital signatures [33]). A ðk; nÞ thresh-
old digital signature scheme allows a set of servers to
generate a digital signature as a single logical entity despite
k� 1 Byzantine faults. It divides a private key into n shares,
each owned by a server. Each server uses its key share to
generate a partial signature on a message m and sends the
partial signature to a combiner server, which combines the
partial signatures into a threshold signature on m. The
threshold signature, which is verified using the public key
corresponding to the divided private key, is only valid if it is
the result of combining k valid partial signatures on m.

Shoup [33] proposed a practical threshold digital
signature scheme that allows participants to generate
threshold signatures based on the standard RSA [34] digital
signature. The scheme provides verifiable secret sharing
[35], which allows participants to verify that the partial

82 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

signatures contributed by other participants are valid (i.e.,
they were generated with a share from the initial key split).

4 SYSTEM MODEL

Servers are implemented as deterministic state machines
[36], [37]. All correct servers begin in the same initial state
and transition between states by applying updates as they
are ordered. The next state is completely determined by the
current state and the next update to be applied.

We assume a Byzantine fault model. Servers are either
correct or faulty. Correct servers do not crash. Faulty servers
may behave arbitrarily. Communication is asynchronous.
Messages can be delayed, lost, or duplicated. Messages that
do arrive are not corrupted.

Servers are organized into wide-area sites, each having a
unique identifier. Each server belongs to one site and has a
unique identifier within that site. The network may
partition into multiple disjoint components, each containing
one or more sites. During a partition, servers from sites in
different components are unable to communicate with each
other. Components may subsequently remerge. Each site Si
has at least 3 � ðfiÞ þ 1 servers, where fi is the maximum
number of servers that may be faulty within Si. For
simplicity, we assume in what follows that in each site,
there are at most f faulty servers. Clients are distinguished
by unique identifiers.

We employ digital signatures, and we make use of a
cryptographic hash function to compute message digests.
Client updates are properly authenticated and protected
against modifications. We assume that all adversaries,
including faulty servers, are computationally bounded such
that they cannot subvert these cryptographic mechanisms.
We also use a ð2f þ 1; 3f þ 1Þ threshold digital signature
scheme. Each site has a public key, and each server receives
a share with the corresponding proof that can be used to
demonstrate the validity of the server’s partial signatures.
We assume that threshold signatures are unforgeable
without knowing 2f þ 1 or more shares.

5 SERVICE PROPERTIES

Our protocol assigns global monotonically increasing
sequence numbers to updates to establish a global total
order. Below, we define the safety and liveness properties
of the Steward protocol. We say that

. A client proposes an update when the client sends the
update to a server in the local site, and the server
receives it.

. A server executes an update with sequence number i
when it applies the update to its state machine. A
server executes update i only after having executed
all updates with a lower sequence number in the
global total order.

. Two servers are connected or a client and server are
connected if any message that is sent between them
will arrive in a bounded time. The protocol
participants need not know this bound beforehand.

. Two sites are connected if every correct server in one
site is connected to every correct server in the
other site.

. A client is connected to a site if it can communicate
with all servers in that site.

We define the following two safety conditions.

Definition 5.1. S1—safety. If two correct servers execute the
ith update, then these updates are identical.

Definition 5.2. S2—validity. Only an update that was
proposed by a client may be executed.

Read-only queries can be handled within a client’s local
site and provide one-copy serializability semantics [2].
Alternatively, a client can specify that its query should be
linearizable [3], in which case replies are collected from a
majority of wide-area sites.

Since no asynchronous Byzantine replication protocol can
always be both safe and live [38], we provide liveness under
certain synchrony conditions. We introduce the following
terminology to encapsulate these synchrony conditions and
our progress metric:

1. A site is stable with respect to time T if there exists
a set S of 2f þ 1 servers within the site, where for
all times T 0 > T , the members of S are 1) correct
and 2) connected. We call the members of S stable
servers.

2. The system is stable with respect to time T if there
exists a set S of a majority of sites, where for all
times T 0 > T , the sites in S are 1) stable with respect
to T and 2) connected. We call the sites in S the
stable sites.

3. Global progress occurs when some stable server
executes an update.

We now define our liveness property.

Definition 5.3. L1—global liveness. If the system is stable
with respect to time T , then if after time T , a stable server
receives an update that it has not executed, then global
progress eventually occurs.

6 PROTOCOL DESCRIPTION

Steward leverages a hierarchical architecture to scale
Byzantine replication to the high-latency low-bandwidth
links characteristic of WANs. Instead of running a single
relatively costly Byzantine fault-tolerant protocol among all
servers in the system, Steward runs a more lightweight
benign fault-tolerant protocol among all sites in the system,
which reduces the number of messages and communication
rounds on the WAN compared to a flat Byzantine solution.

Steward’s hierarchical architecture results in two levels
of protocols: global and local. The global Paxos-like
protocol is run among wide-area sites. Since each site
consists of a set of potentially malicious servers (instead of
a single trusted participant, as Paxos assumes), Steward
employs several intrasite Byzantine fault-tolerant protocols
to mask the effects of malicious behavior at the local level.
Servers within a site agree upon the contents of messages to
be used by the global protocol and generate a threshold
signature for each message, preventing a malicious server
from misrepresenting the site’s decision and confining
malicious behavior to the local site. In this way, each site
emulates the behavior of a correct Paxos participant in the
global protocol.

Similar to the elected coordinator scheme used in BFT,
the local protocols in Steward are run in the context of a

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 83

local view, with one server, the site representative, serving as
the coordinator of a given view. Besides coordinating the
local agreement and threshold-signing protocols, the
representative 1) disseminates messages in the global
protocol originating from the local site to the other site
representatives and 2) receives global messages and
distributes them to the local servers. If the representative
is suspected to be faulty, the other servers in the site run a
local view change protocol to replace the representative and
install a new view.

While Paxos uses an elected leader server to coordinate
the protocol, Steward uses an elected leader site to
coordinate the global protocol; the global protocol runs in
the context of a global view, with one leader site in charge
of each view. If the leader site is partitioned away, the
nonleader sites run a global view change protocol to elect a
new one and install a new global view. The representative
of the leader site drives the global protocol by invoking the
local protocols needed to construct the messages sent over
the WAN.

In the remainder of this section, we present the local
and global protocols that Steward uses to totally order
client updates. We first describe the data structures used
by our protocols. We then present the common case
operation of Steward, followed by the view-change
protocols, which are run when failures occur. We then
present the time-out mechanisms that Steward uses to
ensure liveness. Due to space limitations, we include the
pseudocode associated with normal-case operation only.
The complete pseudocode can be found in Appendix A,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TDSC.2008.53.

6.1 Data Structures

Each server maintains separate variables for the global
Paxos-like protocol and the local intrasite Byzantine fault-
tolerant protocols. Within the global context, a server
maintains the state of its current global view and a
Global_History, reflecting the status of those updates it has
globally ordered or is attempting to globally order. Within
the local context, a server maintains the state of its current
local view. In addition, each server at the leader site
maintains a Local_History, reflecting the status of those
updates for which it has constructed or is attempting to
construct a Proposal. Upon receiving a message, a server
first runs a validity check on the message to ensure that it
contains a valid RSA signature and does not originate from

a server known to be faulty. If a message is valid, it can be
applied to the server’s data structures provided that it does
not conflict with any data contained therein.

6.2 The Common Case

In this section, we trace the flow of an update through
the system as it is globally ordered during the common-
case operation (i.e., when no leader site or site represen-
tative election occurs). The common case makes use of
two local intrasite protocols: THRESHOLD-SIGN (Fig. 1)
and ASSIGN-SEQUENCE (Fig. 2), which we describe below.
The pseudocode for the global ordering protocol (ASSIGN-

GLOBAL-ORDER) is listed in Fig. 3.
The common case works as follows:

1. A client sends an update to a server in its local site.
The update is uniquely identified by a pair consist-
ing of the client’s identifier and a client-generated
logical time stamp. A correct client proposes an
update with time stamp iþ 1 only after it receives a
reply for an update with time stamp i. The client’s
local server forwards the update to the local
representative, which forwards the update to the

84 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

Fig. 1. THRESHOLD-SIGN protocol, used to generate a threshold
signature on a message. The message can then be used in a global
protocol.

Fig. 2. ASSIGN-SEQUENCE protocol, used to bind an update to a

sequence number and create a threshold-signed Proposal.

Fig. 3. ASSIGN-GLOBAL-ORDER protocol. The protocol runs among all

sites and is similar to Paxos.

representative of the leader site. If the client does not
receive a reply within its time-out period, it broad-
casts the update to all servers in its site.

2. When the representative of the leader site receives an
update, it invokes the ASSIGN-SEQUENCE protocol to
assign a global sequence number to the update; this
assignment is encapsulated in a Proposal message.
The site then generates a threshold signature on the
constructed Proposal using THRESHOLD-SIGN, and
the representative sends the signed Proposal to the
representatives of all other sites for global ordering.

3. When a representative receives a signed Proposal,
it forwards this Proposal to the servers in its site.
Upon receiving a Proposal, a server constructs a
site acknowledgment (i.e., an Accept message) and
invokes THRESHOLD-SIGN on this message. The
representative combines the partial signatures and
then sends the resulting threshold-signed Accept
message to the representatives of the other sites.

4. The representative of a site forwards the incoming
Accept messages to the local servers. A server globally
orders the update when it receives bS=2c Accept
messages from distinct sites (whereS is the number of
sites) and the corresponding Proposal. The server at
the client’s local site that originally received the
update sends a reply back to the client.

We now highlight the details of the THRESHOLD-SIGN

and ASSIGN-SEQUENCE protocols.
Threshold-sign. The THRESHOLD-SIGN intrasite proto-

col (Fig. 1) generates a ð2f þ 1; 3f þ 1Þ threshold signature
on a given message.1 Upon invoking the protocol, a server
generates a Partial_Sig message, containing a partial
signature on the message to be signed and a verification
proof that other servers can use to confirm that the partial
signature was created using a valid share. The Partial_Sig
message is broadcast within the site. Upon receiving
2f þ 1 partial signatures on a message, a server combines
the partial signatures into a threshold signature on that
message, which is then verified using the site’s public key.
If the signature verification fails, one or more partial
signatures used in the combination were invalid, in which
case the verification proofs provided with the partial
signatures are used to identify incorrect shares, and the
servers that sent these incorrect shares are classified as
malicious. Further messages from the corrupted servers are
ignored, and the proof of corruption (the invalid Partial_Sig
message) is broadcast to the other servers in the site.

Assign-sequence. The ASSIGN-SEQUENCE local proto-
col (Fig. 2) is used in the leader site to construct a
Proposal message. The protocol takes as input an update
that was returned by the Get_Next_To_Propose proce-
dure, which is invoked by the representative of the leader
site during ASSIGN-GLOBAL-ORDER (Fig. 3, line A4).
Get_Next_To_Propose considers the next sequence num-
ber for which an update should be ordered and returns
either 1) an update that has already been bound to that
sequence number or 2) an update that is not bound to
any sequence number. This ensures that the constructed
Proposal cannot be used to violate safety and, if globally
ordered, will result in global progress.

ASSIGN-SEQUENCE consists of three rounds. The first
two are similar to the corresponding rounds of BFT, and the
third round consists of an invocation of THRESHOLD-SIGN.
During the first round, the representative binds an update u
to a sequence number seq by creating and sending a Pre-
Prepareðgv; lv; seq; uÞ message, where gv and lv are the
current global and local views, respectively. A Pre-Prepare
causes a conflict if either a binding ðseq; u0Þ or ðseq0; uÞ exists
in a server’s data structures. When a nonrepresentative
receives a Pre-Prepare that does not cause a conflict, it
broadcasts a matching Prepareðgv; lv; seq;DigestðuÞÞ mes-
sage. At the end of the second round, when a server receives
a Pre-Prepare and 2f matching Prepare messages for the
same views, sequence number, and update (i.e., when it
collects a Prepare_Certificate), it invokes THRESHOLD-SIGN

on a Proposalðsite id; gv; lv; seq; uÞ. If there are 2f þ 1 correct
connected servers in the site, THRESHOLD-SIGN returns a
threshold-signed Proposal to all servers.

6.3 View Changes

Several types of failure may occur during system execution,
such as the corruption of a site representative or the
partitioning away of the leader site. Such failures require
delicate handling to preserve safety and liveness.

To ensure that the system can make progress despite
server or network failures, Steward uses time-out-triggered
leader election protocols at both the local and global levels of
the hierarchy to select new protocol coordinators. Each
server maintains two timers, Local_T and Global_T, which
expire if the server does not execute a new update (i.e., make
global progress) within the local or global time-out period.
When the Local_T timers of 2f þ 1 servers within a site
expire, the servers replace the current representative.
Similarly, when, in a majority of sites, the Global_T timers
of 2f þ 1 local servers expire, the sites replace the current
leader site.

While the leader election protocols guarantee progress if
sufficient synchrony and connectivity exist, Steward uses
view-change protocols at both levels of the hierarchy to
ensure safe progress. The presence of benign or malicious
failures introduces a window of uncertainty with respect to
pending decisions that may (or may not) have been made in
previous views. For example, the new coordinator may not
be able to definitively determine if some server globally
ordered an update for a given sequence number. However,
our view-change protocols guarantee that if any server
globally ordered an update for that sequence number in a
previous view, the new coordinator will collect sufficient
information to ensure that it respects the established
binding in the new view.

Steward uses a constraining mechanism to enforce this
behavior. Before participating in the global ordering proto-
col, a correct server must become both locally constrained and
globally constrained by completing the LOCAL-VIEW-CHANGE

and GLOBAL-VIEW-CHANGE protocols. The local constraints
ensure continuity across local views (when the site repre-
sentative changes), and the global constraints ensure
continuity across global views (when the leader site
changes). Since a faulty leader site representative may
ignore the constraints imposed by previous views, all servers
in the leader site become constrained, preventing a faulty
server from causing them to act in an inconsistent way.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 85

1. We could use an ðf þ 1; 3f þ 1Þ threshold signature at the cost of an
additional round in ASSIGN-SEQUENCE.

We now provide relevant details of our leader election
and view-change protocols. We focus primarily on the
function of each protocol in ensuring safety and liveness,
rather than on the inner workings of each protocol.

Leader election. Steward uses two Byzantine fault-
tolerant leader election protocols, one in each level of the
hierarchy. Each site runs the LOCAL-VIEW-CHANGE proto-
col to elect its representative, and the system runs the
GLOBAL-LEADER-ELECTION protocol to elect the leader site.
Both protocols provide two important properties necessary
for liveness: if the system is stable and does not make global
progress, 1) views are incremented consecutively, and
2) stable servers remain in each view for approximately
one time-out period. These properties allow stable protocol
coordinators to remain in power long enough for global
progress to be made.

Local view changes. Since the sequencing of Proposals
occurs at the leader site (using the ASSIGN-SEQUENCE local
protocol), replacing the representative of the leader site
requires a Byzantine fault-tolerant reconciliation protocol to
preserve the consistency of the sequencing. Steward uses
the CONSTRUCT-LOCAL-CONSTRAINT local protocol for this
purpose. As a result of the protocol, servers have enough
information about pending Proposals to preserve safety in
the new local view. Specifically, it prevents two conflicting
Proposals, P1ðgv; lv; seq; uÞ and P2ðgv; lv; seq; u0Þ, with
u 6¼ u0, from being constructed in the same global view.

Global view changes. The GLOBAL-VIEW-CHANGE pro-
tocol is triggered after a leader site election. It makes use of
two local protocols, CONSTRUCT-ARU and CONSTRUCT-

GLOBAL-CONSTRAINT, used at the leader site and nonleader
sites, respectively. The leader site representative invokes
CONSTRUCT-ARU, which generates an Aru_Message, contain-
ing the sequence number up to which at least f þ 1 correct
servers in the leader site have globally ordered all previous
updates. The representative sends the Aru_Message to all
other site representatives. Upon receiving this message, a
nonleader site representative invokes CONSTRUCT-GLOBAL-

CONSTRAINT, which generates a Global_Constraint_Message
reflecting the state of the site’s knowledge above the
sequence number contained in the Aru_Message. Servers
in the leader site use the Global_Constraint messages from a
majority of sites to become globally constrained, which restricts
the Proposals they will generate in the new view to preserve
safety.

6.4 Time-Outs

Steward uses time-outs to detect failures. Our protocols do
not assume synchronized clocks; however, we do assume
that the drift of the clocks at different servers is small. This
assumption is valid considering today’s technology. If a
server does not execute updates, a local and, eventually, a
global time-out will occur. These time-outs cause the server
to “assume’’ that the current local and/or global coordi-
nator has failed. Accordingly, the server attempts to elect a
new local/global coordinator by suggesting new views.
Intuitively, coordinators are elected for a reign, during
which each server expects to make progress. If a server does
not make progress, its Local_T timer expires, and it
attempts to elect a new representative. Similarly, if a
server’s Global_T timer expires, it attempts to elect a new
leader site. To provide liveness, Steward changes coordi-
nators using three time-out values, which cause the

coordinators of the global and local protocols to be elected
at different rates. This guarantees that during each
global view, correct representatives at the leader site can
communicate with correct representatives at all stable
nonleader sites. We now describe the three time-outs.

Nonleader site local time-out (T1). Local_T is set to this
time-out at servers in nonleader sites. When Local_T expires
at all stable servers in a site, they preinstall a new local
view. T1 must be long enough for servers in the nonleader
site to construct Global_Constraint messages, which re-
quires at least enough time to complete THRESHOLD-SIGN.

Leader site local time-out (T2). Local_T is set to this
time-out at servers in the leader site. T2 must be long
enough to allow the representative to communicate with all
stable sites. Observe that all nonleader sites do not need to
have correct representatives at the same time; Steward
makes progress as long as each leader site representative
can communicate with at least one correct server at each
stable nonleader site. We accomplish this by choosing T1
and T2 so that during the reign of a representative at the
leader site, f þ 1 servers reign for complete terms at each
nonleader site. The reader can think of the relationship
between the time-outs as follows: The time during which a
server is representative at the leader site overlaps with the
time that f þ 1 servers are representatives at the nonleader
sites. Therefore, we require that T2 � ðf þ 2Þ � T1. The
factor f þ 2 accounts for the possibility that Local_T is
already running at some of the nonleader-site servers when
the leader site elects a new representative.

Global time-out (T3). Global_T is set to this time-out at
all servers, regardless of whether they are in the leader site.
At least two correct representatives in the leader site must
serve complete terms during each global view. Thus, we
require that T3 � ðf þ 3Þ � T2. From the relationship be-
tween T1 and T2, each of these representatives will be able
to communicate with a correct representative at each stable
site. If the time-outs are sufficiently long and the system is
stable, the first correct server to serve a full reign as the
leader site representative will complete GLOBAL-VIEW-

CHANGE. The second correct server will be able to globally
order and execute a new update.

We compute our time-out values based on the global
view. If the system is stable, all stable servers will move to
the same global view. Time-outs T1, T2, and T3 are
deterministic functions of the global view, guaranteeing
that the relationships described above are met at every stable
server. Time-outs double every S global views, where S is
the number of sites. Thus, if there is a time after which
message delays do not increase, then our time-outs
eventually grow long enough for global progress to be
made. We note that when failures occur, Steward may
require more time than flat Byzantine fault-tolerant replica-
tion protocols to reach a configuration where progress will
occur. The global time-out must be large enough so that a
correct leader site representative will complete GLOBAL-

VIEW-CHANGE, which may require waiting for several local
view changes to complete. In contrast, flat protocols do not
incur this delay. However, Steward’s hierarchical architec-
ture yields an OðSÞ wide-area-message complexity for view
change messages, compared to OðNÞ for flat architectures.

86 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

7 PERFORMANCE EVALUATION

To evaluate the performance of our hierarchical architec-
ture, we implemented a complete prototype of our protocol
including all necessary communication and cryptographic
functionality. We focus only on the networking and
cryptographic aspects of our protocols and do not consider
disk writes.

Testbed and network setup. We selected a network
topology consisting of five wide-area sites and assumed at
most five Byzantine faults in each site, in order to quantify
the performance of our system in a realistic scenario. This
requires 16 replicated servers in each site.

Our experimental testbed consists of a cluster with
20 3.2-GHz 64-bit Intel Xeon computers. Each computer can
compute a 1,024-bit RSA signature in 1.3 ms and verify it in
0.07 ms. For n ¼ 16, k ¼ 11, and the 1,024-bit threshold
cryptography that we use for these experiments, a computer
can compute a partial signature and verification proof in
3.9 ms and combine the partial signatures in 5.6 ms. The
leader site was deployed on 16 machines, and the other four
sites were emulated by one computer each. An emulating
computer performed the role of a representative of a
complete 16-server site. Thus, our testbed was equivalent
to an 80-node system distributed across five sites. Upon
receiving a message, the emulating computers busy-waited
for the time it took a 16-server site to handle that packet and
reply to it, including intrasite communication and compu-
tation. We determined busy-wait times for each type of
packet by benchmarking individual protocols on a fully
deployed 16-server site. We used the Spines [39], [40]
messaging system to emulate latency and throughput
constraints on the wide-area links.

We compared the performance results of the above
system with those of the Castro-Liskov implementation of
BFT [4] on the same network setup with five sites, run on
the same cluster. Instead of using 16 servers in each site,
for BFT, we used a total of 16 servers across the entire
network. This allows for up to five Byzantine failures in
the entire network for BFT, instead of up to five Byzantine
failures in each site for Steward. Since BFT is a flat solution
where there is no correlation between faults and the sites
in which they can occur, we believe that this comparison is
fair. We distributed the BFT servers such that four sites
contain three servers each and one site contains four
servers. All the write updates and read-only queries in our
experiments carried a payload of 200 bytes, representing a
common SQL statement.

Our protocols use RSA signatures for authentication.
Although our ASSIGN-SEQUENCE protocol can use vectors
of MACs for authentication (as BFT can), the benefit of using
MACs compared to signatures is limited because the latency
for global ordering is dominated by the wide-area-network
latency. In addition, digital signatures provide nonrepudia-
tion, which can be used to detect malicious servers.

In order to support our claim that our results reflect
fundamental differences between the Steward and BFT
protocols and not differences in their implementations, we
confirmed that BFT’s performance matched our similar
intrasite agreement protocol, ASSIGN-SEQUENCE. Since BFT
performed slightly better than ASSIGN-SEQUENCE, we
attribute Steward’s performance advantage over BFT to its
hierarchical architecture and resultant wide-area-message
savings. Note that in our five-site test configuration, BFT

sends over 20 times more wide-area messages per update
than Steward. This message savings is consistent with the
difference in performance between Steward and BFT shown
in the experiments that follow.

Bandwidth limitation. We first investigate the benefits
of the hierarchical architecture in a symmetric configura-
tion with five sites, where all sites are connected to each
other with 50-ms-latency links (emulating crossing the
continental US).

In the first experiment, clients inject write updates. Fig. 4
shows how limiting the capacity of wide-area links affects
update throughput. As we increase the number of clients,
BFT’s throughput increases at a lower slope than Steward’s,
mainly due to the additional wide-area crossing for each
update. Steward can process up to 84 updates/second in all
bandwidth cases, at which point it is limited by the CPU
used to compute threshold signatures. At 10, 5, and
2.5 Mbps, BFT achieves about 58, 26, and 6 updates/second,
respectively. In each of these cases, BFT’s throughput is
bandwidth limited. We also notice a reduction in the
throughput of BFT as the number of clients increases. We
attribute this to a cascading increase in message loss, caused
by the lack of flow control in BFT. For the same reason, we
were not able to run BFT with more than 24 clients at 5 Mbps
and 15 clients at 2.5 Mbps. We believe that adding a client
queuing mechanism would stabilize the performance of BFT
to its maximum achieved throughput.

Fig. 5 shows that Steward’s average update latency
slightly increases with the addition of clients, reaching
190 ms at 15 clients in all bandwidth cases. As client
updates start to be queued, latency increases linearly. BFT
exhibits a similar trend at 10 Mbps, where the average
update latency is 336 ms at 15 clients. As the bandwidth

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 87

Fig. 4. Write update throughput.

Fig. 5. Write update latency.

decreases, the update latency increases heavily, reaching
600 ms at 5 Mbps and 5 seconds at 2.5 Mbps at 15 clients.

Increasing the update size would increase the percentage
of wide-area bandwidth used to carry data in both Steward
and BFT. Since BFT has higher protocol overhead per
update, this would benefit BFT to a larger extent. However,
Steward’s hierarchical architecture would still result in a
higher data throughput, because the update must only be
sent on the wide area OðSÞ times, whereas BFT would need
to send it OðNÞ times. A similar benefit can be achieved by
using batching techniques, which reduces the protocol
overhead per update. We demonstrate the impact of
batching in [8].

Adding read-only queries. Our hierarchical architecture
enables read-only queries to be answered locally. To
demonstrate this benefit, we conducted an experiment
where 10 clients send random mixes of read-only queries
and write updates. We compared the performance of
Steward (which provides one-copy serializability) and BFT
(which provides linearizability) with 50-ms 10-Mbps links,
where neither was bandwidth limited. Figs. 6 and 7 show
the average throughput and latency, respectively, of
different mixes of queries and updates. When clients send
only queries, Steward achieves about 2.9 ms per query, with
a throughput of over 3,400 queries/second: Since queries
are answered locally, their latency is dominated by two RSA
signatures: one at the originating client and one at the
servers answering the query. Depending on the mix ratio,
Steward performs 2 to 30 times better than BFT.

BFT’s read-only query latency is about 105 ms, and its
throughput is 95 queries/second: This is expected, as read-
only queries in BFT need to be answered by at least
f þ 1 servers, some of which are located across wide-area

links. BFT requires at least 2f þ 1 servers in each site to
guarantee that it can answer queries locally. Such a
deployment, for five faults and five sites, would require at
least 55 servers, which would dramatically increase com-
munication for updates and reduce BFT’s performance.

Wide-area scalability. To demonstrate Steward’s scal-
ability on real networks, we conducted experiments
measuring its performance on two emulated networks
based on real wide-area topologies. The first experiment
was run on an emulated Planetlab [41] topology consisting
of five sites spanning several continents, and the second
experiment emulated a WAN setup across the US, called
CAIRN [42]. Figs. 8 and 9 show the average write update
throughput and latency measured in both experiments,
which we now describe.

We first selected five sites on the Planetlab network,
measured the latency and available bandwidth between all
sites, and emulated the network topology on our cluster.
We ran the experiment on our cluster because Planetlab
machines lack sufficient computational power. The five
sites were located in the US (University of Washington),
Brazil (Rio Grande do Sul), Sweden (Swedish Institute of
Computer Science), Korea (KAIST), and Australia (Monash
University). The network latency varied between 59 ms
(US-Korea) and 289 ms (Brazil-Korea). The available
bandwidth varied between 405 Kbps (Brazil-Korea) and
1.3 Mbps (US-Australia).

As seen in Fig. 8, Steward is able to achieve its maximum
throughput of 84 updates/second with 27 clients. Fig. 9
shows that the latency increases from about 200 ms for one
client to about 360 ms for 30 clients. BFT is bandwidth limited
to about 9 updates/second. The update latency is 631 ms for
one client and several seconds with more than six clients.

88 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

Fig. 6. Update mix throughput—10 clients.

Fig. 7. Update mix latency—10 clients.

Fig. 8. WAN emulation—write update throughput.

Fig. 9. WAN emulation—write update latency.

In the next experiment, we emulated the CAIRN
topology using the Spines messaging system, and we ran
Steward and BFT on top of it. The main characteristic of
CAIRN is that East and West Coast sites were connected
through a single 38-ms 1.86-Mbps link. Since Steward runs a
lightweight fault-tolerant protocol between wide-area sites,
we expect it to achieve performance comparable to existing
benign fault-tolerant replication protocols. We compare the
performance of our hierarchical Byzantine architecture on
the CAIRN topology with that of 2PC protocols [16] on the
same topology.

Fig. 8 shows that Steward achieved a throughput of
about 51 updates/second in our tests, limited mainly by the
bandwidth of the link between the East and West Coasts in
CAIRN. In comparison, an upper bound of 2PC protocols
presented in [43] was able to achieve 76 updates/second.
We believe that the difference in performance is caused by
the presence of additional digital signatures in the message
headers of Steward, adding 128 bytes to the 200-byte
payload of each update. Figs. 8 and 9 show that BFT
achieved a maximum throughput of 2.7 updates/second
and an update latency of over a second, except when there
was a single client.

8 PROOFS OF CORRECTNESS

In this section, we first prove that Steward meets the safety
property listed in Section 5. Due to space limitations, we
provide a proof road map for liveness, and we state certain
lemmas without proof. Complete proofs are presented in
Appendix B, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TDSC.2008.53.

8.1 Proof of Safety

We prove safety by showing that two servers cannot
globally order conflicting updates for the same sequence
number. We use two main claims. In the first claim, we
show that any two servers that globally order an update in
the same global view for the same sequence number will
globally order the same update. We show that a leader site
cannot construct conflicting Proposal messages in the same
global view. A conflicting Proposal has the same sequence
number as another Proposal, but it has a different update.
Since globally ordering two different updates for the same
sequence number in the same global view would require
two different Proposals from the same global view and
since only one Proposal can be constructed within a global
view, all servers that globally order an update for a given
sequence number in the same global view must order the
same update.

In the second claim, we show that any two servers that
globally order an update in different global views for the
same sequence number must order the same update. We
show that a leader site from a later global view cannot
construct a Proposal conflicting with one used by a server
in an earlier global view to globally order an update for
that sequence number. Since no Proposals can be created
that conflict with the one that has been globally ordered,
no correct server can globally order a different update
with the same sequence number. Since a server only
executes an update once it has globally ordered an update
for all previous sequence numbers, two servers executing
the ith update must execute the same update.

We now proceed to prove the first main claim.

Claim 8.1. Let u be the first update globally ordered by any server
for sequence number seq and let gv be the global view in which
u was globally ordered. Then, if any other server globally
orders an update for sequence number seq in global view gv, it
will globally order u.

To prove this claim, we use the following lemmas, which
shows that conflicting Proposal messages cannot be con-
structed in the same global view:

Lemma 8.1. Let P1ðgv; lv; seq; uÞ be the first threshold-signed
Proposal message constructed by any server in leader site S
for sequence number seq. Then, no other Proposal message
P2ðgv; lv0; seq; u0Þ for lv0 � lv, with u0 6¼ u, can be constructed.

We prove Lemma 8.1 with a series of lemma. We begin
by proving that two servers cannot collect conflicting
Prepare Certificates or construct conflicting Proposals in
the same global and local view.

Lemma 8.2. Let PC1ðgv; lv; seq; uÞ be a Prepare Certificate
collected by some server in leader site S. Then, no server in S
can collect a different Prepare Certificate, PC1ðgv; lv; seq; u0Þ,
with ðu 6¼ u0Þ. Moreover, if some server in S collects a
Proposal P1ðgv; lv; seq; uÞ, then no server in S can construct a
Proposal P2ðgv; lv; seq; u0Þ, with ðu 6¼ u0Þ.

Proof. We assume that both Prepare Certificates were
collected and show that this leads to a contradiction. PC1
contains a Pre-Prepareðgv; lv; seq; uÞ and 2f Prepareðgv; lv;
seq;DigestðuÞÞ messages from distinct servers. Since
there are at most f faulty servers in S, at least f þ 1 of
the messages in PC1 were from correct servers. PC2
contains similar messages but with u0 instead of u. Since
any two sets of 2f þ 1 messages intersect on at least one
correct server, there exists a correct server that con-
tributed to both PC1 and PC2. Assume, without loss of
generality, that this server contributed to PC1 first (either
by sending the Pre-Prepare message or by responding to
it). If this server was the representative, it would not
have sent the second Pre-Prepare message, because, from
Fig. 2, line A3, it increments Global_seq and does not
return to seq in this local view. If this server was a
nonrepresentative, it would not have contributed a
Prepare in response to the second Pre-Prepare, since this
would have generated a conflict. Thus, this server did
not contribute to PC2, which is a contradiction.

To construct Proposal P2, at least f þ 1 correct servers
would have had to send partial signatures on P2, after
obtaining Prepare Certificate PC2 reflecting the binding
of seq to u0 (Fig. 2, line C7). Since some server collected
PC1, no server could have collected such a Prepare
Certificate, implying that P2 could not have been
constructed. tu
We now show that two conflicting Proposal messages

cannot be constructed in the same global view, even across
local view changes. We maintain the following invariant.

Invariant 8.1. Let Pðgv; lv; seq; uÞ be the first threshold-signed
Proposal message constructed by any server in leader site S
for sequence number seq in global view gv. We say that
Invariant 8.1 holds with respect to P if the following
conditions hold in leader site S in global view gv:

1. There exists a set of at least f þ 1 correct servers with a
P r e p a r e C e r t i f i c a t e P C ðgv; lv0; seq; uÞ o r a
Proposa lðgv; lv0; seq; uÞ, f or lv0 � lv, in the i r

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 89

L o c a l _ H i s t o r y ½seq� d a t a s t r u c t u r e o r a
Globally_Ordered_Updateðgv0; seq; uÞ, for gv0 � gv,
in their Global_History½seq� data structure.

2. There does not exist a server with any conflicting Prepare
Certificate or Proposal from any view ðgv; lv0Þ, with
lv0 � lv, or a conflicting Globally_Ordered_Update
from any global view gv0 � gv.

Lemma 8.3 shows that the invariant holds in the first
global and local view in which any Proposal might have
been constructed for a given sequence number. Lemma 8.4
shows that the invariant holds throughout the remainder
of the global view, across local view changes. Finally,
Lemma 8.5 shows that if the invariant holds, no Proposal
message conflicting with the first Proposal that was
constructed can be created. In other words, once a Proposal
has been constructed for sequence number seq, there will
always exist a set of at least f þ 1 correct servers that
maintain and enforce the binding reflected in the Proposal.

Lemma 8.3. Let Pðgv; lv; seq; uÞ be the first threshold-signed
Proposal message constructed by any server in leader site S for
sequence number seq in global view gv. Then, when P is
constructed, Invariant 8.1 holds with respect to P, and it holds
for the remainder of ðgv; lvÞ.

Lemma 8.4. Let Pðgv; lv; seq; uÞ be the first threshold-signed
Proposal message constructed by any server in leader site S
for sequence number seq in global view gv. If Invariant 8.1
holds with respect to P at the beginning of a run of
CONSTRUCT-LOCAL-CONSTRAINT, then it is never violated
during the run.

Lemma 8.5. Let Pðgv; lv; seq; uÞ be the first threshold-signed
Proposal message constructed by any server in leader site S for
sequence number seq in global view gv. If Invariant 8.1 holds
with respect to P at the beginning of a view ðgv; lv0Þ, with
lv0 � lv, then it holds throughout the view.

We can now prove Lemma 8.1:

Proof. By Lemma 8.3, Invariant 8.1 holds with respect to P
throughout ðgv; lvÞ. By Lemma 8.4, the invariant holds
with respect to P during and after CONSTRUCT-LOCAL-

CONSTRAINT. By Lemma 8.5, the invariant holds at the
beginning and end of view ðgv; lvþ 1Þ. Repeated applica-
tions of Lemma 8.4 and Lemma 8.5 shows that the
invariant always holds in global view gv.

In order for P2 to be constructed, at least f þ 1 correct
servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Fig. 2,
line C3). Since the invariant holds throughout gv, at least
f þ 1 correct servers do not collect such a Prepare
Certificate and do not send such a partial signature. This
leaves only 2f servers remaining, which is insufficient to
construct the Proposal. Since a Proposal is needed to
construct a Globally_Ordered_Update, no conflicting
Globally_Ordered_Update can be constructed. tu
Finally, we can prove Claim 8.1:

Proof. To globally order an update u in global view gv for
sequence number seq, a server needs a Proposal ðgv; �;
seq; uÞ message and bS=2c corresponding Accept mes-
sages. By Lemma 8.1, all Proposal messages constructed
in gv are for the same update, which implies that all
servers which globally order an update in gv for seq
globally order the same update. tu

We now prove the second main claim.

Claim 8.2. Let u be the first update globally ordered by any server
for sequence number seq and let gv be the global view in which
u was globally ordered. Then, if any other server globally
orders an update for sequence number seq in a global view gv0,
with gv0 > gv, it will globally order u.

We prove Claim 8.2 using Lemma 8.6, which shows
that once an update has been globally ordered for a given
sequence number, no conflicting Proposal messages can
be generated for that sequence number in any future
global view.

Lemma 8.6. Let u be the first update globally ordered by any server
for sequence number seq with corresponding Proposal
P1ðgv; lv; seq; uÞ. Then, no other Proposal message P2ðgv0; �;
seq; u0Þ for gv0 > gv, with u0 6¼ u, can be constructed.

We prove Lemma 8.6 using a series of lemmas, and we
maintain the following invariant:

Invariant 8.2. Let u be the first update globally ordered by any
server for sequence number seq and let gv be the global view in
which u was globally ordered. Let Pðgv; lv; seq; uÞ be the first
Proposal message constructed by any server in the leader site
in gv for sequence number seq. We say that Invariant 8.2 holds
with respect to P if the following conditions hold:

1. There exists a majority of sites, each with at least
f þ 1 correct servers with a Prepare Certificate ðgv;
lv0; seq; uÞ, a P r o p o s a l ðgv0; �; seq; uÞ, o r a
Globally_Ordered_Updateðgv0; seq; uÞ, with gv0 � gv
and lv0 � lv, in its Global_History½seq� data structure.

2. There does not exist, at any site in the system, a server
with any conflicting Prepare Certificate ðgv0;
lv0; seq; u0Þ, P r o p o s a l ðgv0; �; seq; u0Þ, o r
Globally_Ordered_Updateðgv0; seq; u0Þ, with gv0 �gv,
lv0 � lv, and u0 6¼ u.

Lemma 8.7 shows that Invariant 8.2 holds when the first
update is globally ordered for sequence number seq and
that it holds throughout the view in which it is ordered.
Lemmas 8.8 and 8.9 then show that the invariant holds
across global view changes. Finally, Lemma 8.10 shows that
if Invariant 8.2 holds at the beginning of a global view after
which an update has been globally ordered, then it holds
throughout the view.

Lemma 8.7. Let u be the first update globally ordered by any
server for sequence number seq and let gv be the global view in
which u was globally ordered. Let Pðgv; lv; seq; uÞ be the first
Proposal message constructed by any server in the leader site
in gv for sequence number seq. Then, when u is globally
ordered, Invariant 8.2 holds with respect to P, and it holds for
the remainder of global view gv.

Lemma 8.8. Let u be the first update globally ordered by any server
for sequence number seq and let gv be the global view in which u
was globally ordered. Let Pðgv; lv; seq; uÞ be the first Proposal
message constructed by any server in the leader site in gv for
sequence number seq. Assume that Invariant 8.2 holds with
respect to P and let S be one of the (majority) sites maintained
by the first condition of the invariant. Then, if a run of
CONSTRUCT-ARU or CONSTRUCT-GLOBAL-CONSTRAINT

begins at S, the invariant is never violated during the run.

Lemma 8.9. Let u be the first update globally ordered by any
server for sequence number seq and let gv be the global view in

90 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

which u was globally ordered. Let Pðgv; lv; seq; uÞ be the first
Proposal message constructed by any server in the leader site
in gv for sequence number seq. Then, if Invariant 8.2
holds with respect to P at the beginning of a run of the
Global_View_Change protocol, then it is never violated during
the run. Moreover, if at least f þ 1 correct servers in the leader
site become globally constrained by completing the GLOBAL-

VIEW-CHANGE protocol, the leader site will be in the set
maintained by condition 1 of Invariant 8.2.

Lemma 8.10. Let u be the first update globally ordered by any
server for sequence number seq and let gv be the global view in
which gv was globally ordered. Let Pðgv; lv; seq; uÞ be the first
Proposal message constructed by any server in the leader site
in gv for sequence number seq. Then, if Invariant 8.2 holds
with respect to P at the beginning of a global view ðgv0; �Þ,
with gv0 > gv, then it holds throughout the view.

Proof. We show that no conflicting Prepare Certificate,
Proposal, or Globally_Ordered_Update can be con-
structed during global view gv that would cause the
invariant to be violated. We assume that a conflicting
Prepare Certificate PC is collected and show that this
leads to a contradiction. This then implies that no
conflicting Proposals or Globally_Ordered_Updates can
be constructed.

If PC is collected, then some server collected a Pre-
Prepareðgv0; lv; seq; u0Þ and 2f Prepare(ðgv0; lv; seq;
Digestðu0Þ) for some local view lv and u0 6¼ u. At least
f þ 1 of these messages were from correct servers.
Moreover, this implies that at least f þ 1 correct servers
were globally constrained. By Lemma 8.9, since at least
f þ 1 correct servers became globally constrained in gv0,
the leader site meets condition 1 of Invariant 8.2, and it
thus has at least f þ 1 correct servers with a Prepare
Certificate, Proposal, or Globally_Ordered_Update bind-
ing seq to u. At least one such server contributed to the
construction of PC. A correct representative would not
send such a Pre-Prepare message because the Get_Next_-
To_Propose() routine would return the constrained
update. Similarly, a correct server would see a conflict.
Since no server can collect a conflicting Prepare Certifi-
cate, no server can construct a conflicting Proposal.
Thus, no server can collect a conflicting Globally_
Ordered_Update, since this would require a conflicting
Proposal, and Invariant 8.2 holds throughout global
view gv0. tu
We can now prove Lemma 8.6.

Proof. By Lemma 8.7, Invariant 8.2 holds with respect to P1
throughout global view gv. By Lemma 8.9, the invariant
holds with respect to P1 during and after the GLOBAL-

VIEW-CHANGE protocol. By Lemma 8.10, the invariant
holds at the beginning and end of global view gvþ 1.
Repeated application of Lemma 8.9 and Lemma 8.10
shows that the invariant always holds for all global
views gv0 > gv.

In order for P2 to be constructed, at least f þ 1 correct
servers must send a partial signature on P2 after
collecting a corresponding Prepare Certificate (Fig. 2,
line C3). Since the invariant holds, at least f þ 1 correct
servers do not collect such a Prepare Certificate and do
not send such a partial signature. This leaves only
2f servers remaining, which is insufficient to construct
the Proposal. tu

Finally, we can prove Claim 8.2.

Proof. We assume that two servers globally order conflict-
ing updates with the same sequence number in two
global views gv and gv0 and show that this leads to a
contradiction.

Without loss of generality, assume that a server
globally orders update u in gv, with gv < gv0. This
server collected a Proposalðgv; �; seq; uÞ message and
bS=2c corresponding Accept messages. By Lemma 8.6,
any future Proposal message for sequence number seq
contains update u, including the Proposal from gv0. This
implies that another server that globally orders an
update in gv0 for sequence number seq must do so using
the Proposal containing u, which contradicts the fact
that it globally ordered u0 for sequence number seq. tu
S1—safety follows directly from Claims 8.1 and 8.2.

8.2 Proof Road Map of Global Liveness

We prove global liveness by contradiction: we assume that
global progress does not occur and show that if the system
is stable and a stable server receives an update which it has
not executed, then the system will reach a state in which
some stable server will execute an update and make global
progress.

We first show that if no global progress occurs, all stable
servers eventually reconcile their global histories to the
maximum sequence number through which any stable
server has executed all updates. By definition, if any stable
server executes an update beyond this point, global
progress will have been made, and we will have reached
a contradiction.

Once the above reconciliation completes, the system
eventually reaches a state in which a stable representative of
a stable leader site remains in power for a sufficiently long
time to be able to complete the global-view-change protocol;
this is a precondition for globally ordering a new update
(which would imply global progress). To prove this, we first
show that eventually, the stable sites will move through
global views together, and within each stable site, the stable
servers will move through local views together. We then
establish the relationships between the global and local
time-outs, which show that the stable servers will even-
tually remain in their views long enough for global progress
to be made.

Finally, we show that a stable representative of a stable
leader site will eventually be able to globally order (and
execute) an update that it has not previously executed. We
first show that the same update cannot be globally ordered
on two different sequence numbers. This implies that when
the representative executes an update, global progress will
occur; no correct server has previously executed the update,
since otherwise, by our reconciliation claim, all stable
servers would have eventually executed the update and
global progress would have occurred (which contradicts
our assumption). We then show that each of the local
protocols invoked during the global ordering protocol will
complete in bounded finite time. Since the duration of our
time-outs are a function of the global view and stable
servers preinstall consecutive global views, the stable
servers will eventually reach a global view in which a
new update can be globally ordered and executed.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 91

9 CONCLUSION

This paper presented a hierarchical architecture that enables
efficient scaling of Byzantine replication to systems that
span multiple wide-area sites, each consisting of several
potentially malicious replicas. The architecture reduces the
message complexity on wide-area updates, increasing the
system’s scalability. By confining the effect of any malicious
replica to its local site, the architecture enables the use of a
benign fault-tolerant algorithm over the WAN, increasing
system availability. A further increase in availability and
performance is achieved by the ability to process read-only
queries within a site.

We implemented Steward, a fully functional prototype
that realizes our architecture, and evaluated its performance
over several network topologies. The experimental results
show considerable improvement over flat Byzantine repli-
cation algorithms, bringing the performance of Byzantine
replication closer to existing benign fault-tolerant replica-
tion techniques over WANs.

ACKNOWLEDGMENTS

Yair Amir thanks his friend Dan Schnackenberg for introdu-
cing him to this problem area and for conversations on this
type of solution. He will be greatly missed. This work was
partially funded by DARPA Grant FA8750-04-2-0232, and by
US National Science Foundation Grants 0430271 and 0430276.

REFERENCES

[1] Y. Amir, C. Danilov, J. Kirsch, J. Lane, D. Dolev, C. Nita-Rotaru,
J. Olsen, and D. Zage, “Scaling Byzantine Fault-Tolerant
Replication to Wide Area Networks,” Proc. Int’l Conf. Dependable
Systems and Networks (DSN ’06), pp. 105-114, 2006.

[2] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley
Longman, 1987.

[3] M.P. Herlihy and J.M. Wing, “Linearizability: A Correctness
Condition for Concurrent Objects,” ACM Trans. Programming
Languages and Systems, vol. 12, no. 3, pp. 463-492, 1990.

[4] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,”
Proc. Third Usenix Symp. Operating Systems Design and Implementa-
tion (OSDI ’99), pp. 173-186, 1999.

[5] A. Avizeinis, “The N-Version Approach to Fault-Tolerant Soft-
ware,” IEEE Trans. Software Eng., vol. 11, no. 12, pp. 1491-1501,
Dec. 1985.

[6] Genesis: A Framework for Achieving Component Diversity, http://
www.cs.virginia.edu/genesis/, 2008.

[7] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson,
J. Knight, A. Nguyen-Tuong, and J. Hiser, “N-Variant Systems:
A Secretless Framework for Security through Diversity,” Proc.
Usenix Security Symp. (Usenix-SS ’06), pp. 105-120, 2006.

[8] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Customizable Fault
Tolerance for Wide-Area Replication,” Proc. 26th IEEE Int’l Symp.
Reliable Distributed Systems (SRDS ’07), pp. 65-82, 2007.

[9] M.J. Fischer, “The Consensus Problem in Unreliable Distributed
Systems (A Brief Survey),” Fundamentals of Computation Theory,
pp. 127-140, 1983.

[10] D. Dolev and H.R. Strong, “Authenticated Algorithms for
Byzantine Agreement,” SIAM J. Computing, vol. 12, no. 4,
pp. 656-666, 1983.

[11] R.D. Schlichting and F.B. Schneider, “Fail-Stop Processors: An
Approach to Designing Fault-Tolerant Computing Systems,”
Computer Systems, vol. 1, no. 3, pp. 222-238, 1983.

[12] “The Rampart Toolkit for Building High-Integrity Services,”
selected papers from the Int’l Workshop Theory and Practice in
Distributed Systems, pp. 99-110, 1995.

[13] K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith, “The
SecureRing Protocols for Securing Group Communication,” Proc.
31st Ann. IEEE Hawaii Int’l Conf. System Sciences (HICSS ’98), vol. 3,
pp. 317-326, 1998.

[14] M. Cukier, T. Courtney, J. Lyons, H.V. Ramasamy, W.H. Sanders,
M. Seri, M. Atighetchi, P. Rubel, C. Jones, F. Webber, P. Pal,
R. Watro, and J. Gossett, “Providing Intrusion Tolerance with
ITUA,” Supplement of IEEE Int’l Conf. Dependable Systems and
Networks (DSN ’02), pp. C-5-1-C-5-3, 2002.

[15] H.V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and
W.H. Sanders, “Quantifying the Cost of Providing Intrusion
Tolerance in Group Communication Systems,” Proc. IEEE Int’l
Conf. Dependable Systems and Networks (DSN ’02), pp. 229-238,
2002.

[16] K. Eswaran, J. Gray, R. Lorie, and I. Taiger, “The Notions of
Consistency and Predicate Locks in a Database System,” Comm.
ACM, vol. 19, no. 11, pp. 624-633, 1976.

[17] D. Skeen, “A Quorum-Based Commit Protocol,” Proc. Sixth
Berkeley Workshop Distributed Data Management and Computer
Networks, pp. 69-80, 1982.

[18] L. Lamport, “The Part-Time Parliament,” ACM Trans. Computer
Systems, vol. 16, no. 2, pp. 133-169, 1998.

[19] L. Lamport, “Paxos Made Simple,” ACM SIGACT News, vol. 32,
pp. 51-58, 2001.

[20] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin,
“Separating Agreement from Execution for Byzantine Fault-
Tolerant Services,” Proc. 19th ACM Symp. Operating Systems
Principles (SOSP ’03), pp. 253-267, 2003.

[21] J.-P. Martin and L. Alvisi, “Fast Byzantine Consensus,” IEEE
Trans. Dependable and Secure Computing, vol. 3, no. 3, pp. 202-215,
July-Sept. 2006.

[22] R. Rodrigues, P. Kouznetsov, and B. Bhattacharjee, “Large-Scale
Byzantine Fault Tolerance: Safe but Not Always Live,” Proc. Third
Workshop Hot Topics in System Dependability (HotDep ’07), p. 17,
2007.

[23] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong,
“Zyzzyva: Speculative Byzantine Fault Tolerance,” Proc. 21st
ACM Symp. Operating Systems Principles (SOSP ’07), pp. 45-58,
2007.

[24] D. Malkhi and M.K. Reiter, “Secure and Scalable Replication in
Phalanx,” Proc. 17th IEEE Int’l Symp. Reliable Distributed Systems
(SRDS ’98), pp. 51-60, 1998.

[25] D. Malkhi and M. Reiter, “Byzantine Quorum Systems,”
J. Distributed Computing, vol. 11, no. 4, pp. 203-213, 1998.

[26] D. Malkhi and M. Reiter, “An Architecture for Survivable
Coordination in Large Distributed Systems,” IEEE Trans. Knowl-
edge and Data Eng., vol. 12, no. 2, pp. 187-202, Mar.-Apr. 2000.

[27] D. Malkhi, M. Reiter, D. Tulone, and E. Ziskind, “Persistent
Objects in the Fleet System,” The Second DARPA Information
Survivability Conf. and Exposition (DISCEX ’01), pp. 126-136, 2001.

[28] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie,
“Fault-Scalable Byzantine Fault-Tolerant Services,” Proc. 20th
ACM Symp. Operating Systems Principles (SOSP ’05), pp. 59-74,
2005.

[29] M. Correia, L.C. Lung, N.F. Neves, and P. Verı́ssimo, “Efficient
Byzantine-Resilient Reliable Multicast on a Hybrid Failure
Model,” Proc. 21st IEEE Int’l Symp. Reliable Distributed Systems
(SRDS ’02), pp. 2-11, 2002.

[30] P. Verı́ssimo, “Uncertainty and Predictability: Can They Be
Reconciled?” Future Directions in Distributed Computing, LNCS 2584,
pp. 108-113, 2003.

[31] Y.G. Desmedt and Y. Frankel, “Threshold Cryptosystems,” Proc.
Ninth Ann. Int’l Cryptology Conf. (CRYPTO ’89), pp. 307-315, 1989.

[32] A. Shamir, “How to Share a Secret,” Comm. ACM, vol. 22, no. 11,
pp. 612-613, 1979.

[33] V. Shoup, “Practical Threshold Signatures,” LNCS 1807,
pp. 207-223, 2000.

[34] R.L. Rivest, A. Shamir, and L.M. Adleman, “A Method for
Obtaining Digital Signatures and Public-Key Cryptosystems,”
Comm. ACM, vol. 21, no. 2, pp. 120-126, 1978.

[35] P. Feldman, “A Practical Scheme for Non-Interactive Verifiable
Secret Sharing,” Proc. 28th Ann. Symp. Foundations of Computer
Science (FOCS ’87), pp. 427-437, 1987.

[36] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, 1978.

[37] F.B. Schneider, “Implementing Fault-Tolerant Services Using the
State Machine Approach: A Tutorial,” ACM Computing Surveys,
vol. 22, no. 4, pp. 299-319, 1990.

[38] M.J. Fischer, N.A. Lynch, and M.S. Paterson, “Impossibility of
Distributed Consensus with One Faulty Process,” J. ACM, vol. 32,
no. 2, pp. 374-382, 1985.

92 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2010

[39] The Spines Project, http://www.spines.org/, 2008.
[40] Y. Amir and C. Danilov, “Reliable Communication in Overlay

Networks,” Proc. IEEE Int’l Conf. Dependable Systems and Networks
(DSN ’03), pp. 511-520, 2003.

[41] Planetlab, http://www.planet-lab.org/, 2008.
[42] The CAIRN Network, http://www.isi.edu/div7/CAIRN/, 2008.
[43] Y. Amir, C. Danilov, M. Miskin-Amir, J. Stanton, and C. Tutu, “On

the Performance of Consistent Wide-Area Database Replication,”
Technical Report CNDS-2003-3, Dec. 2003.

Yair Amir received the BS and MS degrees
from the Technion, Israel Institute of Technol-
ogy, in 1985 and 1990, respectively, and the
PhD degree from the Hebrew University of
Jerusalem, Israel, in 1995. He is currently with
the Department of Computer Science, Johns
Hopkins University, Baltimore, where he served
as an assistant professor since 1995, an
associate professor since 2000, and a professor
since 2004. Prior to his PhD, he gained

extensive experience building C3I systems. He is a creator of the
Spread and Secure Spread messaging toolkits, the Backhand and
Wackamole clustering projects, the Spines overlay network platform,
and the SMesh wireless mesh network. He has been a member of the
program committees of the IEEE International Conference on Dis-
tributed Computing Systems (1999, 2002, and 2005-2007), the ACM
Conference on Principles of Distributed Computing (2001), and the
International Conference on Dependable Systems and Networks (2001,
2003, and 2005). He is a member of the ACM, the IEEE, and the IEEE
Computer Society.

Claudiu Danilov received the BS degree in
computer science from the Politechnica Uni-
versity of Bucharest in 1995 and the MSE
and PhD degrees in computer science from
Johns Hopkins University, Baltimore, in 2000
and 2004, respectively. He is an advanced
computing technologist at Boeing Phantom
Works, Seattle. Before he joined Boeing in
2006, he was an assistant research scientist
in the Department of Computer Science,

Johns Hopkins University. His research interests include wireless
and mesh network protocols, distributed systems, and survivable
messaging systems. He is a creator of the Spines overlay network
platform and the SMesh wireless mesh network.

Danny Dolev received the BSc degree in
mathematics and physics from the Hebrew
University of Jerusalem in 1971. His MSc thesis
in applied mathematics was completed in 1973
at the Weizmann Institute of Science, Israel. His
PhD dissertation was on the synchronization of
parallel processors (1979). He was a postdoc-
toral fellow at Stanford University from 1979 to
1981 and an IBM research fellow from 1981 to
1982. He joined the Hebrew University of

Jerusalem in 1982. From 1987 to 1993, he held a joint appointment
as a professor at the Hebrew University of Jerusalem and as a
research staff member at the IBM Almaden Research Center. He is
currently a professor at the Hebrew University of Jerusalem. His
research interests are all aspects of distributed computing, fault
tolerance, and networking—theory and practice. He is a senior member
of the IEEE and the IEEE Computer Society.

Jonathan Kirsch received the BSc degree in
computer science from Yale University in 2004
and the MSE degree in computer science from
Johns Hopkins University, Baltimore, in 2007. He
is a fifth-year PhD student in the Department of
Computer Science, Johns Hopkins University,
under the supervision of Dr. Yair Amir. He is a
member of the Distributed Systems and Net-
works Laboratory. His research interests include
fault-tolerant replication and survivability. He is a

student member of the IEEE.

John Lane received the BA degree in biology
from Cornell University in 1992 and the MSE
and PhD degrees in computer science from
Johns Hopkins University, Baltimore, in 2006
and 2008, respectively. He is a senior scientist
at LiveTimeNet. His research interests include
distributed systems, Byzantine fault tolerance,
and high performance overlay networks. He is
a member of the ACM, the IEEE, and the IEEE
Computer Society.

Cristina Nita-Rotaru received the BS and
MSc degrees in computer science from the
Politechnica University of Bucharest, Romania,
in 1995 and 1996, respectively, and the MSE
and PhD degrees in computer science from
Johns Hopkins University, Baltimore, in 2000
and 2003, respectively. She is an assistant
professor in the Department of Computer
Science, Purdue University, West Lafayette,
Indiana, and a member of the Center for

Education and Research in Information Assurance and Security,
Purdue University. Her research interests include secure distributed
systems, network security protocols, and security aspects in wireless
networks. She is a senior member of the ACM, the IEEE, and IEEE
Computer Society.

Josh Olsen received the BS degree from
Purdue University, West Lafayette, Indiana, in
2005. He is a graduate student at the Donald
Bren School of Information and Computer
Sciences, University of California, Irvine. His
research interests include systems, security,
and cryptography. He is a student member of
the IEEE and the IEEE Computer Society

David Zage received the BS degree from Purdue
University, West Lafayette, Indiana, in 2004. He
is a fifth-year PhD student in the Department of
Computer Science, Purdue University, under the
supervision of Prof. Cristina Nita-Rotaru. He is a
member of the Dependable and Secure Distrib-
uted Systems Laboratory (DS2). His research
interests include distributed systems, fault toler-
ance, and security. He is a student member of
the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

AMIR ET AL.: STEWARD: SCALING BYZANTINE FAULT-TOLERANT REPLICATION TO WIDE AREA NETWORKS 93

