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Abstract— A novel framework is proposed for the design of
cost sensitive boosting algorithms. The framework is based on
the identification of two necessary conditions for optimal cost-
sensitive learning: that 1) expected losses must be minimized
by optimal cost-sensitive decision rules, and 2) empirical loss
minimization must emphasize the neighborhood of the target
cost-sensitive boundary. It is shown that these conditions enable
the derivation of cost-sensitive losses that can be minimized by
gradient descent, in the functional space of convex combinations
of weak learners, to produce novel boosting algorithms. The
proposed framework is applied to the derivation of cost-sensitive
extensions of AdaBoost, RealBoost, and LogitBoost. Experimental
evidence, with a synthetic problem, standard data sets, and the
computer vision problems of face and car detection, is presented
in support of the cost-sensitive optimality of the new algorithms.
Their performance is also compared to those of various previous
cost-sensitive boosting proposals, as well as the popular com-
bination of large margin classifiers and probability calibration.
Cost-sensitive boosting is shown to consistently outperform all
other methods.

Index Terms— Boosting, AdaBoost, cost-sensitive learning,
asymmetric boosting.

I. INTRODUCTION

Classification problems such as fraud detection [1], medical
diagnosis [2], or object detection in computer vision [3],
[4], [5], [6], [7], [8], [9], [10], are naturally cost sensitive
[11]. In these problems the cost of missing a target is much
higher than that of a false-positive, and classifiers that are
optimal under symmetric costs (such as the popular zero-one
loss) tend to under perform. The design of optimal classifiers
with respect to losses that weigh certain types of errors more
heavily than others is denoted as cost-sensitive learning [11].
Current research in this area falls into two main categories.
The first aims for generic procedures that can make arbitrary
classifiers cost sensitive, by resorting to Bayes risk theory or
some other cost minimization strategy [12], [13]. The second
attempts to extend particular algorithms, so as to produce cost-
sensitive generalizations. Of interest to this work are classifiers
obtained by thresholding a continuous function, here denoted
as a predictor, and therefore similar to the Bayes decision rule
(BDR) [14], [15], which is well known to be optimal for both
cost-insensitive and cost-sensitive classification. In particular,
we consider learning algorithms in the boosting family [16],
[17], [18]. These are algorithms that 1) learn a predictor by
combining weak classification rules (weak learners), and 2)
use a sample re-weighting mechanism to emphasize points
that are difficult to classify.

In this work, we consider the problem of how to extend
boosting algorithms so as to achieve optimal cost-sensitive
decision rules. The starting point is the observation, by Fried-
man et al. [18], that in the (asymptotic) limit of infinite

training data the predictor which minimizes the exponential
loss used by AdaBoost (and many other boosting algorithms)
is the ratio of posterior distributions that also appears in the
BDR. Convergence to this optimal predictor is, however, not
guaranteed everywhere for finite training samples. It is, in fact,
well known that, in this case, boosting does not produce cali-
brated estimates of class posterior probabilities [19], [20], [21],
[18], [22]. This is due to the emphasis of sample reweighing
on the classification boundary: while the boosted predictor
converges to the optimal predictor in a small neighborhood
of this boundary, it does not approximate the latter well away
from it. This does not compromise cost-insensitive classifica-
tion performance, which only requires the two predictors to
have the same sign, but impairs cost-sensitive performance,
which requires a good approximation of the optimal predictor
throughout the feature space.

Two conditions are identified as necessary for optimal
cost-sensitive boosting: 1) that the expected boosting loss is
minimized by the optimal cost-sensitive decision rule, and 2)
that empirical loss minimization emphasizes a neighborhood
of the target cost-sensitive boundary, rather than that optimal
in the cost-insensitive sense. We propose that this is best
accomplished by modifying boosting’s loss function, so that
boosting-style gradient descent can satisfy the two necessary
conditions above. This leads to a general framework for the
cost-sensitive extension of boosting algorithms. We introduce
cost-sensitive versions of the exponential and binomial losses,
which underlie AdaBoost [16], RealBoost [18], [23], and
LogitBoost [18]. Cost-sensitive extensions of the algorithms
are derived, and shown to satisfy the necessary conditions for
cost-sensitive optimality. The new algorithms are compared
with various cost-sensitive extensions of boosting available in
the literature, including AdaCost [24], CSB0, CSB1, CSB2
[25] asymmetric-AdaBoost [3] and AdaC1, AdaC2, AdaC3
[26]. All of these extensions are heuristic, achieving cost-
sensitivity by manipulation of AdaBoost’s weights and con-
fidence parameters. In most cases it is not clear if, or how,
these manipulations modify boosting’s loss. This is unlike
the framework now proposed, which inherits all properties of
cost-insensitive boosting, simply shifting boosting’s emphasis
from the neighborhood of the cost-insensitive boundary to the
neighborhood of the target cost-sensitive boundary.

The performance of the proposed cost-sensitive boosting
algorithms is also evaluated through experiments on synthetic
problems, and datasets from the UCI repository [27] and
computer vision face [28] and car [29] detection problems.
These experiments show that the proposed algorithms do
indeed possess cost sensitive optimality, and can meet target
detection rates without (sub-optimal) weight manipulation.
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They are also shown to outperform the previously available
cost-sensitive boosting methods, consistently achieving the
best results in all experiments. The paper is organized as
follows. In Section II we review the main principles of cost-
sensitive classification. Section III then presents a brief review
of the standard boosting algorithms and previous attempts
at cost-sensitive extensions, discussing their limitations for
optimal cost-sensitive classification. The new framework for
cost-sensitive boosting is introduced in Section IV, where
the extensions of AdaBoost, RealBoost, and LogitBoost, are
also derived. Finally, empirical evaluation is discussed in
Section V, and some conclusions are drawn in Section VI.

II. COST-SENSITIVE CLASSIFICATION

We start with the fundamentals of cost-sensitive classifi-
cation. Most concepts apply to multi-way classification, but
here we only consider the problem of binary classification, or
detection.

A. Detection

A detector, or binary classifier, is a function h : X →
{−1, 1} that maps a feature vector x = (x1, . . . , xN )T ∈
X ⊂ R

N into a class label y ∈ {−1, 1}. This mapping is
implemented as

h(x) = sgn[f(x)] (1)

where f : X → R is a predictor, and sgn[x] = 1 if
x ≥ 0, and sgn[x] = −1 otherwise. Feature vectors are
samples from a random process X that is described by a
probability distribution PX(x) on X , and labels are samples
from a random variable Y of probability distribution PY (y),
y ∈ {−1, 1}. The detector is optimal if it minimizes the risk
R = EX,Y [L(x, y)], where L(x, y) is a loss function. We
consider losses of the form

L(x, y) =

⎧⎨
⎩

0, if h(x) = y
C2 if y = −1 and h(x) = 1
C1 if y = 1 and h(x) = −1

, (2)

with Ci > 0. When C1 = C2 the detector is cost-insensitive,
otherwise it is cost-sensitive. The three scenarios accounted
by L(x, y) are denoted as correct decisions (h(x) = y), false
positives (y = −1 and h(x) = 1), and false-negatives or
misses (y = 1 and h(x) = −1).

For many cost-sensitive problems, the costs C1 and C2 are
specified from domain knowledge. For example, in a fraud
detection application, prior experience dictates that there is
an average cost of C2 dollars per false positive, while a
false negative (miss) will cost C1 > C2 dollars, on average.
In this case, the costs are simply C2 and C1. There are,
nevertheless, problems in which it is more natural to specify
target detection or false-positive rates than costs. The two
types of problems can be addressed within a common optimal
detection framework.

B. Optimal detection

When C1 and C2 are specified, the optimal predictor is
given by the BDR [14], [15], i.e.

f∗ = arg min
f

EX,Y [L(x, y)]

with
f∗(x) = log

PY |X(1|x)C1

PY |X(−1|x)C2
. (3)

An alternative specification is in terms of error rates, where the
goal is to minimize the false-positive rate of the classifier given
a target detection rate. The optimal solution can be obtained
with recourse to the Neyman-Pearson Lemma [30]: for any
detection rate ξ, the optimal predictor is still (3). However,
for a given ξ, the constants (C1, C2) must be such that the
specified detection rate is met, i.e.∫

H

P (x|y = 1)dx = ξ (4)

with

H =

{
x

∣∣∣∣ P (y = 1|x)

P (y = −1|x)
>

C2

C1

}
.

The only difference is that, rather than specifying costs, one
has to search for the costs that satisfy (4). This can be done
by cross-validation. Since all that matters is C1/C2, C2 can
be set to one and the search is one-dimensional. In any case,
the optimal detector can be written as

h∗
T (x) = sgn [f∗

0 (x)− T ] (5)

where
f∗
0 (x) = log

PY |X(1|x)

PY |X(−1|x)
, (6)

is the optimal cost-insensitive predictor and

T = log
C2

C1
. (7)

Hence, for any cost structure (C1, C2), cost-sensitive optimal-
ity differs from cost-insensitive optimality only through the
threshold T : all optimal cost-sensitive rules can be obtained
from f∗

0 (x) by threshold manipulation. Furthermore, from (4),
different thresholds correspond to different detection rates,
and threshold manipulation can produce the optimal decision
rule at any detection (or false-positive) rate. This is the
motivation for the widespread use of receiver operating curves
(ROCs) [31], [32], [33], and the tuning of error rates by
threshold manipulation.

C. Practical detection

In practice, the probabilities of (6) are unknown, and a
learning algorithm is used to estimate the predictor f̂(x) ≈
f∗
0 (x), producing an approximately optimal cost-sensitive rule

ĥT (x) = sgn[f̂(x)− T ]. (8)

This, however, does not guarantee good cost-sensitive per-
formance for the particular cost-structure (C1, C2) associated
with T . In fact, there are no guarantees of the latter even when
the cost-insensitive detector is optimal, i.e. when ĥ0(x) =
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sgn[f∗
0 (x)]. While the necessary and sufficient conditions for

cost-insensitive optimality are that

f̂(x) = f∗
0 (x) = 0, ∀x ∈ C (9)

sgn[f̂(x)] = sgn[f∗
0 (x)], ∀x �∈ C, (10)

where
C =

{
x

∣∣∣∣log
PY |X(1|x)

PY |X(−1|x)
= 0

}

is the optimal cost-insensitive classification boundary, the
optimality of (8) requires that

f̂(x) = f∗
0 (x) = T, ∀x ∈ CT (11)

sgn[f̂(x)− T ] = sgn[f∗
0 (x)− T ], ∀x �∈ CT (12)

with
CT =

{
x

∣∣∣∣log
PY |X(1|x)

PY |X(−1|x)
= T

}
.

Hence, the necessary condition for cost-sensitive optimality
of f̂ at any point x in the boundary CT , f̂(x) = f∗

0 (x), is
much tighter than the sufficient condition for cost-insensitive
optimality of f̂ at that point, sgn[f̂(x)] = sgn[f∗

0 (x)].
It follows that threshold manipulation can only produce

optimal cost-sensitive detectors for all values of T if f̂(x) =
f∗
0 (x),∀x ∈ X . Since this is a much more restrictive constraint

than the necessary and sufficient conditions, (9) and (10), of
cost-insensitive optimality there is, in general, no reason for a
cost-insensitive learning algorithm to enforce it. This is, in
fact, Vapnik’s argument against generative solutions to the
classification problem: that there is no point in attempting to
learn the optimal predictor everywhere, when it is sufficient
to do so on the classification boundary [34].

III. BOOSTING

This work addresses the cost-sensitive extension of boosting
algorithms. Such algorithms learn a predictor f(x) by linear
combination of simple decision rules, or weak learners [35],
Gm(x)

f(x) =

M∑
m=1

Gm(x). (13)

Optimality is defined with respect to some risk, such as the
expected exponential loss

EX,Y [exp(−yf(x))], (14)

or the expected negative binomial log-likelihood

−EX,Y [y′ log(p(x)) + (1− y′) log(1− p(x))] (15)

where y′ = (y + 1)/2 ∈ {0, 1} is a re-parametrization of y
and

p(x) =
ef(x)

ef(x) + e−f(x)
. (16)

Learning is based on a finite sample D = {(xi, yi)}
n
i=1,

empirical loss estimates, and iterative selection of weak learn-
ers. At iteration m, a weight w

(m)
i is assigned to example

(xi, yi), reweighing D to amplify the importance of points
that are poorly classified with the current predictor. We next

review some popular algorithms in this family, whose cost-
sensitive extensions will be later introduced. All of these can
be interpreted as gradient descent on a functional space of
linear combinations of weak learners, with respect to one of
the losses above[36], [37], [38].

A. AdaBoost

AdaBoost [16], [39] learns combinations of scaled binary
classifiers

GAda
m (x) = αmgm(x), (17)

where {αm}
M
m=1 is a weight sequence and {gm(x)}M

m=1 a
sequence of binary rules, gm(x) : X → {−1, 1}, usually
implemented with a decision stump gm(x) = sgn[φm(x)−tm],
where φm(x) is a feature response (projection of x along a
basis function φm) and tm a threshold. The ensemble predictor
of (13) is learned by gradient descent with respect to the
exponential loss. The direction of largest descent at the mth

iteration is [40], [36]

gm(x) = arg min
g

(err(m)) (18)

where

err(m) =

n∑
i=1

w
(m)
i [1− I(yi = gm(xi))], (19)

is the total error of gm(x) and I(·) the indicator function

I(y = x) =

{
1 y = x
0 y �= x.

(20)

The optimal step size in the descent direction has closed-form

αm =
1

2
log

(
1− err(m)

err(m)

)
, (21)

and the weights are updated according to

w
(m+1)
i = w

(m)
i e−yiG

Ada
m (xi). (22)

B. RealBoost

RealBoost [18], [23] is an extension of AdaBoost that
produces better estimates of f∗

0 (x) by using real-valued weak
learners in (13) (in contrast with binary-valued weak learners.)
In this case, the direction of greatest descent of the exponential
loss is a (re-weighted) log-odds ratio

Greal
m (x) =

1

2
log

P
(w)
Y |X(1|φm(x))

P
(w)
Y |X(−1|φm(x))

, (23)

where, as before, φm(x) is a feature response to x, and the
superscript w indicates that the probability distribution is that
of the re-weighted sample. Weights are updated according to

w
(m+1)
i = w

(m)
i e−yiG

real
m (xi). (24)
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C. LogitBoost

LogitBoost is motivated by the following observation, ini-
tially made by Friedman et al. [18].

Lemma 1: (Statistical interpretation of boosting.)
The loss E[exp(−yf(x))] is minimized by the symmetric

logistic transform of PY |X(1|x),

f∗
0 (x) =

1

2
log

PY |X(1|x)

PY |X(−1|x)
. (25)

Proof: See [18].
This implies that both Ada and RealBoost are stage-wise
procedures for fitting an additive logistic regression model.
Friedman et al. argued that this is more naturally accomplished
by stage-wise minimization of (15). At the mth boosting
iteration, the optimal step is given by a weighted least squares
regression for the weak learner Glogit

m (x) that best fits a set
of working responses

z
(m)
i =

y′
i − p(m)(xi)

p(m)(xi)(1− p(m)(xi))
,

where p(m)(x) is the probability of (16) based on the predictor
of (13) after m− 1 iterations. The weights are

w
(m)
i = p(m)(xi)(1− p(m)(xi)). (26)

D. Limitations for cost-sensitive learning

We have already seen that the optimal cost-insensitive
detector does not require the optimal predictor of (25): it
suffices that (13) converges to any function satisfying (9) and
(10). While Lemma 1 guarantees that the minimization of the
exponential or binomial losses are sufficient to obtain (25),
these guarantees are asymptotic, and do not necessarily hold
for finite samples. In fact, the large-margin classification the-
ory suggests that good out-of-sample generalization requires a
greater accuracy of the approximation inside a neighborhood
of the optimal cost-insensitive boundary C than outside of it.
For boosting, the emphasis on the boundary is accomplished
through the example re-weighting of (22), (24), or (26). This,
however, usually implies that (13) does not converge to the
optimal predictor everywhere, and is not necessarily a good
predictor for cost-sensitive detection.

To obtain some intuition, we consider a detection problem
with a bounded optimal predictor f∗

0 (x). Assume a finite
training sample D and that, as is common in the large-margin
literature, sample points from the two classes are separable,
i.e. the detector sgn[f∗

0 (x)] has zero classification error on D1.
Define the neighborhood N (C) = {x; |f∗

0 (x)| < ε}, where
ε > 0 is such that N (C) contains at least one positive and
one negative example. Let f̂ (m)(x) be the predictor learned
by m iterations of boosting, and assume that

f̂ (m)(x) =

⎧⎨
⎩

f∗
0 (x), ∀x ∈ N (C)

+∞, if f∗
0 (x) > 0 and x �∈ N (C)

−∞, if f∗
0 (x) < 0 and x �∈ N (C).

(27)

1Note that the classification error does not have to be zero in general, only
for the particular sample D.

y=1

y=0

T

Txf
m

)(ˆ )(

Txf )(
*

0

0)(ˆ)(
)(*

0
xfxf

m

Fig. 1. Example of a detection problem where boosting produces the optimal
cost-insensitive detector but threshold manipulation does not lead to optimal
cost-sensitive detectors. The figure presents level-sets of both the optimal
predictor f∗

0 (x) (solid line) and the boosted predictor f̂ (m)(x) (dashed
line). While boosting emphasizes the approximation of f∗

0 (x) in N (C),
optimal cost-sensitive rules require a good approximation in other regions,
e.g. N (CT ).

For both Ada and RealBoost, a simple recursion shows that

w
(m)
i

w
(0)
i

= e−yi

∑m
k=1 Gk(xi) = e−yif̂

(m)(xi), (28)

where we have also used (13). Let the initial weight distri-
bution be uniform, w

(0)
i = 1/n, as is customary in boosting

practice. Since yif̂
(m)(xi) ≥ 0,∀i ∈ D, it follows that

nw
(m)
i = e−|f̂(m)(xi)|. (29)

Similarly, for LogitBoost,

w
(m)
i (xi) =

(
ef̂(m)(xi) + e−f̂(m)(xi)

)−2

(30)

≈ e−2sgn[f̂(m)(xi)]f̂
(m)(xi) = e−2|f̂(m)(xi)|.

In either case, nw
(m)
i or w

(m)
i can be seen as a measure of

the importance of training point i (relative to the remainder
of D). Inside the neighborhood N (C) this importance is
one for points along the cost-insensitive boundary C (where
f̂ (m)(x) = 0), and decreases exponentially with the distance
to it. Outside N (C) all points have zero importance (because
|f̂ (m)(x)| =∞). Hence, despite the facts that 1) the predictor
is already perfect in N (C) but 2) approximates f∗

0 (x) very
poorly outside this neighborhood, all points outside N (C) are
disregarded by subsequent boosting iterations. This implies
that the predictor will not get any better in the sense of cost
sensitive classification.

The example above turns out not to be a mathematical
curiosity. Extensive empirical studies show that, when the span
of the space of weak learners is rich enough to separate the
training set into the two classes, and boosting is run for enough
iterations, all boosting algorithms produce a distribution of
posterior probabilities PY |X(y|x) highly concentrated around
0 or 1, independently of the true distribution [19], [20]. Note
that this does not compromise cost-insensitive optimality:
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f̂ (m)(xi) simply grows to ∞ for positive, and to −∞ for
negative examples. But the boosted predictor has very poor
cost-sensitive performance. This problem cannot be addressed
by early stopping. In the iterations before class separation,
boosting assigns exponentially decaying weight to points cor-
rectly classified by previous iterations, in the cost-insensitive
sense. Hence, points far from C are exponentially discounted
as boosting progresses, creating a soft neighborhood N (C)
of nearby points that dominate the optimization. In result,
boosting does not produce accurate posterior estimates, even
in this regime [21], [19], [20]. This is, in fact, the reason
for the popularity of post-processing boosting’s predictions
with probability calibration techniques, such as the method of
Platt [41], or isotonic regression [42], when posterior accuracy
is important [21].

The lack of everywhere convergence to the optimal predictor
is illustrated in Fig. 1, which depicts f∗

0 (x) and f̂ (m)(x).
Because f∗

0 (x) increases (decreases) monotonically to the left
(right) of C, any f̂ (m)(x) with 1) C as a zero-level set, and
2) the same monotonicity, satisfies (9)-(10). The emphasis on
N (C) guarantees that the zero-level set of f̂ (m)(x) closely
approximates C, assuring good cost-insensitive generalization.
But the level sets of f̂ (m)(x) and f∗

0 (x) are not identical
beyond N (C). In particular, the set f̂ (m)(x) = T can differ
significantly from f∗

0 (x) = T , the optimal cost-sensitive
boundary CT for the cost-structure of threshold T in (5).
Hence, threshold manipulation on f̂ (m)(x) does not produce
the optimal cost-sensitive rule of (5).

E. Prior work on cost-sensitive boosting

This limitation is well known in the boosting literature,
and motivated various cost-sensitive algorithms [24], [25], [3],
[26]. Since, for cost-sensitive learning, the main problem is
boosting’s reweighing emphasis on N (C), instead of N (CT ),
it has long been noted that good cost-sensitive performance
requires a different reweighing mechanism. This also complies
with the intuition that cost-sensitive detection should weigh
differently examples from different classes. A naive implemen-
tation of this intuition would be to modify the initial boosting
weights, so as to represent the cost asymmetry. However,
because boosting re-updates all weights at each iteration,
it quickly destroys the initial asymmetry, and the predictor
obtained after convergence is usually not different from that
produced with symmetric initial conditions. A second natural
heuristic is to modify the weight update equation. For example,
the updated weight could be a mixture of (22), (24), or
(26), and the initial cost-sensitive weights. We refer to such
heuristics as “weight manipulation”. Previously proposed cost-
sensitive boosting algorithms, such as AdaCost [24], CSB0,
CSB1, CSB2 [25], Asymmetric-AdaBoost [3], AdaC1, AdaC2,
or AdaC3 [26], fall in this class. For example, CSB2 [25]
modifies the weight update rule of AdaBoost to

w
(m+1)
i = Ci · w

(m)
i e−yiG

Ada
m (xi), (31)

relying on (21) for the computation of αm. While various
justifications are available for the different heuristic manipu-
lations of the boosting equations, these manipulations provide

no guarantees of asymptotic convergence to a good cost-
sensitive decision rule. Furthermore, none of the cost-sensitive
extensions can be easily applied to algorithms other than
AdaBoost. We next introduce a framework for cost-sensitive
boosting that addresses these two limitations.

IV. COST-SENSITIVE BOOSTING

The new framework is inspired by two observations. First,
the different boosting algorithms are gradient descent meth-
ods [36], [37], [38] for empirical minimization of losses that
are asymptotically minimized by the cost-insensitive predic-
tor of (25). Second, the main limitation, for cost-sensitive
learning, is the emphasis of the empirical loss minimization
on a neighborhood N (C) of the cost-insensitive boundary, as
shown in Figure 1. These two properties are interconnected.
While the limitation is due to the weight-update mechanism,
simply modifying this mechanism (as discussed in the pre-
vious section) does not guarantee acceptable cost-sensitive
performance. Instead, boosting involves a balance between
weight updates and descent steps which must be components
of the minimization of the common loss. For cost-sensitive
optimality, this balance requires that the loss function satisfies
two conditions, which we denote as the necessary conditions
for cost-sensitive optimality.

1) The expected loss is minimized by the optimal cost-
sensitive predictor f∗(x) of (3).

2) Empirical loss minimization leads to a weight-updating
mechanism that emphasizes a neighborhood of N (CT ).

This suggests an alternative strategy for cost-sensitive boost-
ing: to modify the loss functions so that these two conditions
are met. In what follows, we show how this can be accom-
plished for Ada, Real and LogitBoost. The framework could
be used to derive cost-sensitive extensions of other boosting
algorithms, e.g. GentleBoost [18] or AnyBoost [36]. We limit
our attention to the ones referred for reasons of brevity, and
their popularity.

A. Cost-sensitive losses

We start by noting that the optimal cost-sensitive detector
of (5) can be re-written as h∗

T = sgn[f∗(x)] with f∗(x) as
in (3). Since the zero level-set of this predictor is the cost-
sensitive boundary CT , boosting-style gradient descent on loss
functions asymptotically minimized by f∗(x) should satisfy
the two necessary conditions for cost-sensitive optimality.
The first is indeed met by the following extensions of the
exponential and binomial losses.

Lemma 2: The expected losses

EX,Y

[
I(y = 1)e−y.C1f(x) + I(y = −1)e−y.C2f(x)

]
, (32)

−EX,Y [y′ log(pc(x)) + (1− y′) log(1− pc(x))] (33)

where I(·) is the indicator function of (20) and

pc(x) =
eγf(x)+η

eγf(x)+η + e−γf(x)−η
, (34)

with γ =
C1 + C2

2
, η =

1

2
log

C2

C1
,
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are minimized by the asymmetric logistic transform of
PY |X(1|x),

f(x) =
1

C1 + C2
log

P (y = 1|x)C1

P (y = y′′|x)C2
, (35)

where y′′ = −1 for (32) and y′′ = 0 for (33).
Proof: See appendix I.

We next derive cost-sensitive boosting extensions, by gradient
descent on empirical loss estimates, and later show that they
shift the emphasis of boosting weights from N (C) to N (CT ).

B. Cost-sensitive AdaBoost

Result 3: (Cost-sensitive AdaBoost) Consider the mini-
mization of the empirical estimate of the expected loss of (32),
based on a training sample {(xi, yi)}n

i=1, by gradient descent
on the space, S, of functions of the form of (13) and (17), and
define two sets

I+ = {i|yi = 1} I− = {i|yi = −1}. (36)

The weak learner selected at iteration m consists of an optimal
step αm along the direction gm of largest descent of the
expected loss, and is given by

(αm, gm) = arg min
α,g

∑
i∈I+

w
(m)
i exp(−C1αg(xi)) (37)

+
∑
i∈I−

w
(m)
i exp(C2αg(xi))

with

w
(m+1)
i =

{
w

(m)
i e−C1αmgm(xi), i ∈ I+

w
(m)
i eC2αmgm(xi), i ∈ I−.

(38)

The optimal step α(g) along a direction g is the solution of

2C1 · b · cosh(C1α) + 2C2 · d · cosh(C2α) = (39)
C1 · T+ · e

−C1α + C2 · T− · e
−C2α

with

T+ =
∑
i∈I+

w
(m)
i T− =

∑
i∈I−

w
(m)
i (40)

b =
∑
i∈I+

w
(m)
i [1− I(yi = g(xi))]

d =
∑
i∈I−

w
(m)
i [1− I(yi = g(xi))] (41)

and the descent direction is given by

gm = arg min
g

[
(eC1α(g) − e−C1α(g)) · b + e−C1α(g)T+ (42)

+(eC2α(g) − e−C2α(g)) · d + e−C2α(g)T−
]

Proof: See appendix II.
For AdaBoost, possible descent directions are defined by

a set of binary classifiers {gk(x)}K
k=1. The gradient descent

iteration cycles through these, for each solving (39). This can
be done efficiently with standard scalar search procedures. In
our experiments, the optimal α was found in an average of
6 iterations of bisection search. Given α, the loss associated
with the binary classifier is computed and the best classifier

Algorithm 1 Cost-sensitive AdaBoost
Input: Training set D = {(x1, y1), . . . , (xn, yn)}, where y ∈
{1,−1} is the class label of example x, costs C1, C2, set of binary
classifiers {gk(x)}K

k=1, and number M of weak learners in the final
decision rule.
Initialization: Select uniformly distributed weights for each class

wi =
1

2|I+|
, ∀i ∈ I+, wi =

1

2|I−|
, ∀i ∈ I−.

for m = {1, . . . , M} do
for k = {1, . . . , K} do

Compute (40)-(41) with g(x) = gk(x) and solve (39) with
respect to α.
Use (42) to compute the loss of the weak learner (gk(x); αk)
.

end for
select the weak learner (gm(x), αm) of smallest loss.
update weights wi according to (38).

end for
Output: decision rule h(x) = sgn[

∑M

m=1 αmgm(x)].

selected by (42). A summary of the cost-sensitive boosting
algorithm is presented in Algorithm 1. It is worth mentioning
that it is fully compatible with AdaBoost, in the sense that it
reduces to the latter when C1 = C2 = 1.

C. Cost-sensitive RealBoost

Result 4: (Cost-sensitive RealBoost) Consider the mini-
mization of the empirical estimate of the expected loss of (32),
based on a training sample {(xi, yi)}n

i=1, by gradient descent
on the space, Sr, of predictors of the form of (13) where the
weak learners Gm(x) are real functions. Given a dictionary of
features {φ1(x), . . . , φK(x)}, the direction of largest descent
at iteration m has the form

Greal
m (x) = Gφk∗

(x) (43)

where the optimal feature is determined by

k∗ = arg min
k

∑
i∈I+

w
(m)
i exp(−C1Gφk

(xi)) +

∑
i∈I−

w
(m)
i exp(C2Gφk

(xi)) (44)

with weights given by

w
(m+1)
i =

{
w

(m)
i e−C1Greal

m (xi), i ∈ I+

w
(m)
i eC2Greal

m (xi), i ∈ I−,
(45)

and where

Gφ(x) =

⎧⎨
⎩ 1

C1 + C2
log

P
(w)
Y |X(1|φ(x))C1

P
(w)
Y |X(−1|φ(x))C2

⎫⎬
⎭ . (46)

P
(w)
Y |X(y|φ(x)), y ∈ {1,−1} are estimates of the posterior

probabilities for the two classes, after the application of the
feature transformation φ(x) to a sample re-weighted according
to w

(m)
i .
Proof: See appendix III.

The posterior probabilities P
(w)
Y |X(y|φm(x)), y ∈ {1,−1} of

(46) can be estimated with standard techniques [15]. For
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Algorithm 2 Cost-sensitive RealBoost
Input: Training set D = {(x1, y1), . . . , (xn, yn)}, where y ∈
{1,−1} is the class label of example x, costs C1, C2, and number
M of weak learners in the final decision rule.
Initialization: Select uniformly distributed weights for each class

wi =
1

2|I+|
, ∀i ∈ I+, wi =

1

2|I−|
, ∀i ∈ I−.

for m = {1, . . . , M} do
for k = {1, . . . , K} do

compute the gradient step Gφk
(x) with (46).

end for
select the optimal direction according to (44) and set the weak
learner Greal

m (x) according to (43).
update weights wi according to (45).

end for
Output: decision rule h(x) = sgn[

∑M

m=1 Greal
m (x)].

example, using weighted histograms of feature responses if
the φk(x) are scalar features. Histogram regularization should
be used to avoid empty histogram bins. A summary of cost-
sensitive RealBoost is presented in Algorithm 2. This is fully
compatible with RealBoost, reducing to it when C1 = C2 = 1,
and has identical computational complexity.

D. Cost-sensitive LogitBoost

Finally, we consider LogitBoost.
Result 5: (Cost-sensitive LogitBoost) Consider the mini-

mization, by Newton’s method, of the empirical estimate of
the expected binomial loss of (33), based on a training sample
{(xi, yi)}n

i=1, on the space Sr of predictors of the form of (13)
with real-valued weak learners Gm(x). Given a dictionary of
features {φ1(x), . . . , φK(x)}, and a predictor f̂ (m)(x), the
Newton step at iteration m has the form

Glogit
m (x) =

1

2γ
Gφk∗

(x) (47)

where Gφ(x) = aφφ(x) + bφ is the result of the weighted
regression

(aφ, bφ) = arg min
aφ,bφ

∑
i

w
(m)
i (zi − aφφ(xi)− bφ)2 (48)

with

zi =
y′

i − p
(m)
c (xi)

p
(m)
c (xi)(1− p

(m)
c (xi))

(49)

w
(m)
i = p(m)(xi)(1− p(m)(xi)), (50)

where p
(m)
c (x) is the link function of (34), and p(m)(x)

that of (16), with f(x) = f̂ (m)(x). The optimal feature is
determined by

k∗ = arg min
k

∑
i

w
(m)
i (zi − aφk

φk(xi)− bφk
)2. (51)

Proof: See appendix IV.
A summary of cost-sensitive LogitBoost is presented in

Algorithm 3. The algorithm is fully compatible with Logit-
Boost, in the sense that it reduces to the latter when C1 =
C2 = 1 and has identical computational complexity. It is
instructive to compare it with Platt’s method for posterior

Algorithm 3 Cost-sensitive LogitBoost
Input: Training set D = {(x1, y

′
1), . . . , (xn, y′

n)}, where y′ ∈
{0, 1} is the class label of example x, costs C1, C2, γ = C1+C2

2
,

η = 1
2

log C2
C1

, I+ the set of examples with label 1, I− the set
of examples with label 0, and number M of weak learners in the
final decision rule.
Initialization: Set uniformly distributed probabilities p

(1)
c (xi) =

p(1)(xi) = 1
2
∀xi and f̂ (1)(x) = 0.

for m = {1, . . . , M} do
compute the working responses z

(m)
i as in (49) and weights

w
(m)
i as in (50).

for k = {1, . . . , K} do
compute the solution to the least squares problem of (48),

aφk
=
〈1〉

w
· 〈φk(xi)zi〉w − 〈φk(xi)〉w · 〈zi〉w
〈1〉

w
· 〈φ2

k(xi)〉w − 〈φk(xi)〉
2
w

(52)

bφk
=

〈
φk(xi)

2
〉

w
· 〈zi〉w − 〈φk(xi)〉w · 〈φk(xi)zi〉w

〈1〉
w
· 〈φ2

k(xi)〉w − 〈φk(xi)〉
2
w

(53)

where we have defined

〈q(xi)〉w
.
=

∑
i

w
(m)
i q(xi).

end for
select the optimal direction according to (51) and set the weak
learner Glogit

m (x) according to (47).
set f̂ (m+1)(x) = f̂ (m)(x) + Glogit

m (x).
end for
Output: decision rule h(x) = sgn[

∑M

m=1 Glogit
m (x)].

probability calibration [41], [21], [43]. This procedure attempts
to map the prediction f(x) ∈ [−∞, +∞] to a posterior
probability p(x) ∈ [0, 1], using the link function of (34).
The γ and η parameters are determined by gradient descent
with respect to the binomial loss of (33), also used in cost-
sensitive LogitBoost. The difference is that, in Platt’s method,
cost-insensitive boosting is first used to learn the predictor
f(x) and maximum likelihood is then used to determine the
parameters γ and η that best fit a cross-validation data set. On
the other hand, cost-sensitive LogitBoost uses the calibrated
link function throughout the boosting iterations. Note that,
besides requiring an additional validation set, Platt’s method
does not solve the problem of Figure 1, since the emphasis
of boosting remains on N (C), not on N (CT ). We next show
that all proposed cost-sensitive boosting algorithms solve this
problem.

E. Cost-sensitive weights

We have mentioned above that cost-sensitive boosting algo-
rithms should

• converge asymptotically to the optimal predictor of (3),
• emphasize a neighborhood of the cost-sensitive boundary
N (CT ), when learning from finite samples.

The first condition is guaranteed by the losses of (32) and (33).
To investigate the second we consider the weight mechanisms
of the three algorithms. Let f̂ (m) be the boosted predictor
after m iterations. For both cost-sensitive Ada and RealBoost,
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a simple recursion shows that, for correctly classified points,

w
(m)
i

w
(0)
i

= e−yiQif̂
(m)(xi) = e−Qi|f̂

(m)(xi)|,

where Qi = C1 if i ∈ I+ and Qi = C2 otherwise.
For LogitBoost, the weight w

(m)
i is a symmetric function of

p(m)(xi), with maximum at p(m)(xi) = 1/2 or, from (16), at
f̂ (m)(xi) = 0. As in the cost-insensitive case,

w
(m)
i (x) =

(
ef̂(m)(xi) + e−f̂(m)(xi)

)−2

≈ e−2|f̂(m)(xi)|.

These equations are qualitatively identical to (29) and (30).
The only difference is that, as f̂ (m)(x) converges to (35), its
zero-level set is the cost-sensitive boundary CT . Hence, points
along CT have unitary importance, while the importance of the
remaining points decreases exponentially with their distance
to CT . This implies that all cost-sensitive boosting algorithms
shift the boosting emphasis from N (C) to a soft neighborhood
of the cost-sensitive boundary N (CT ).

V. EXPERIMENTAL EVALUATION

To evaluate the proposed algorithms we started with a
synthetic problem, of known BDR, which allows explicit
comparison to the optimal cost-sensitive detector. Comparisons
against previous methods were then performed with data from
the UCI repository and a large face detection dataset. Finally,
we compared cost-sensitive boosting and a number of state-
of-the-art solutions to the computer vision problem of car
detection. Unless otherwise noted, all boosting algorithms used
decision stumps as weak learners, and all parameters were
selected by cross-validation. The data was divided into train
and test sets, and the training set split into five folds, four
of which were used for training and one for validation. The
latter served to tune parameters (cost parameters and classifier
threshold) so as to minimize a classification cost. For car
detection, this was the equal error rate (EER), the quantity
usually reported for the dataset adopted (UIUC). Elsewhere,
it was the number of false positives at a given detection
rate. In this case, cross validation was repeated for detection
rates between 80% and 95%, with increments of 2.5%. Cross
validation was applied to all parameters of all methods. For
example, support vector machines (SVMs) required validation
of kernel bandwidth, margin/outliers trade-off parameter, and
threshold.

A. Synthetic datasets

We start with a synthetic binary scalar problem, involving
Gaussian classes of equal variance σ2 = 1 and means μ− =
−1 (y = −1) and μ+ = 1 (y = 1). Ten thousand examples
were sampled per class, simulating the scenario where the
class probabilities are uniform.

To test the accuracy of the cost-sensitive detectors we relied
on the following observations. First, given a cost structure
(C1, C2), a necessary condition for the optimality of the
boosted detector is that the asymmetric logistic transform
of (35) holds along the cost-sensitive boundary, i.e. x∗ =
f−1(0) where f(x) is the optimal predictor of (35) and x∗

the zero-crossing of the boosted predictor. Second, from (35),
this is equivalent to

PY |X(1|x∗) =
C2

C1 + C2
. (54)

It follows that, given C1, C2 and x∗, it is possible to infer the
true class posterior probabilities at x∗. This is equally valid for
multivariate problems, where x∗ becomes a level set. Hence,
if the boosting algorithm produces truly optimal cost-sensitive
detectors, the plots of C2

C1+C2
and PY |X(1|x∗), as functions of

x∗, should be identical. For the Gaussian problem considered,

PY |X(1|x) =
1

1 + e−2x
, (55)

and (54) implies that x∗ = −T/2, with T as in (7). It is thus
possible to evaluate the accuracy of the cost-sensitive detec-
tors, for the entire range of (C1, C2), by either measuring the
similarity between the plots (x∗, C2

C1+C2
) and (x∗, 1

1+e−2x∗ ) or
the plots (x∗,−T

2 ) and (x∗, x∗). These are shown on Figure 2
for detectors learned with five iterations of cost-sensitive Ada,
Real, and LogitBoost. In all cases C2 = 1 and C1 was varied
over a range of values. Both Real and LogitBoost produce
near optimal cost-sensitive detectors, but the restriction of
the predictor to a combination of binary functions creates
difficulties for AdaBoost.

B. Real datasets

To evaluate performance on real data, various algorithms
were compared on datasets from the UCI repository [27], and
the face detection problem [28].

1) UCI: Ten data sets were selected - Pima-diabetes, breast
cancer diagnostic, breast cancer prognostic, original Wisconsin
breast cancer, liver disorder, sonar, echo-cardiogram, Cleve-
land heart disease, tic-tac-toe, and Haberman’s survival. In
all cases, data points with missing values were ignored. The
multi-class Cleveland heart disease data was converted to
the problem of detecting presence (classes 1, 2, 3, 4) vs.
absence (value 0) of disease. We compared the performance
of the proposed cost-sensitive boosting algorithms (CS-Ada,
CS-Real, and CS-Log), their previously available counterparts2

(CSB0, CSB1, CSB2, AdaC2, AdaC3, and AdaCost), and the
combination of standard AdaBoost, RealBoost, or LogitBoost
with Platt calibration [41]. For completeness, we have also
tested SVMs with linear and Gaussian kernels, and Platt
calibration. In all cases, one point was first removed from
the dataset and reserved for testing. The classifier was trained
on the remaining data so as to meet a target detection rate
(all parameters cross-validated), and used to classify this test
point. The process was iterated, each point taking a turn as
test set, and the total number of classification errors recorded.

Table I presents the average number of errors for each
classifier and dataset, across the five detection rates considered.
To simplify the comparison, the table includes two overall
statistics. The first is the number of datasets in which each
cost-sensitive boosting algorithm achieved lower error than all

2Note that, because Asymmetric-AdaBoost [3] and CSB2 [25] are identical,
we do not report results for the former.
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Fig. 2. a) True posterior class probability PY |X(y = 1|x), as a function of x, and estimates by cost-sensitive Ada, Logit and RealBoost. b) Comparison of
the plots (x∗,−T

2
) and (x∗, x∗).

TABLE I
AVERAGE NUMBER OF ERRORS FOR EACH CLASSIFIER AND UCI DATASET, ACROSS FIVE DETECTION RATES. THE LOWEST AVERAGE ERROR ACHIEVED

ON EACH DATASET IS SHOWN IN BOLDFACE. RANK INDICATES THE AVERAGE RANKING OF THE CLASSIFIER ACROSS DATASETS, AND #WINS IS THE

NUMBER OF DATASETS ON WHICH A COST SENSITIVE BOOSTING ALGORITHM ACHIEVED LOWER ERROR THAN ALL PREVIOUS BOOSTING METHODS.

pima liver wdbc sonar wpbc Wisc echo heart tic survival Rank #w
CS-Ada 205.6 143 26.4 52.2 128.4 37.2 44 61.4 433.8 172.8 4.84 6
CS-Log 248.6 146.4 25.8 67 85.6 35 40 74.6 463.2 178.6 5.35 5
CS-Real 256.2 144 32.4 56.8 101.2 35.4 54 69.6 110.4 96.6 5.35 4

CSB0 241.2 161 43.8 66.6 140.2 40.8 46 89 329.2 101.8 8.2
CSB1 384 175.8 30.8 65.8 121.8 89 65 100.8 415 188.6 10.95
CSB2 223 143.5 31 42.6 118.8 45.8 61 88.8 317.4 145.2 6.45
AdaC2 249.4 162.2 36 56 111.4 42.4 53 64.2 180 131.2 6.65
AdaC3 250.4 169 29.6 48.2 113.8 39.6 57 102.6 258.6 205.2 8.4

ADaCost 365 170 42.2 88 111 43.4 65 110 366 189 11.35

SVM-L 415.2 153.2 32.2 74 111.4 33 43 66.8 550.2 181.4 7.75
SVM-G 390 161.2 31 35.8 122 30.6 44 153.6 625 153.6 8.1

Ada 244.2 168 28.4 57.4 132.8 37.6 48 73.8 465.6 174.6 8.1
Real 263.8 154.6 32.4 67.2 104.8 35 47 67.6 119 152 6.4
Logit 263 154 26 68 120.6 33.2 41 68.2 545.8 184.6 7.1

prior cost-sensitive boosting algorithms. This is referred to as
the number of wins. The second is the classifier ranking of
[44]: the algorithms were first ranked on each dataset (rank
one for lowest error) and the average rank of each classifier,
across datasets, is reported. The three cost-sensitive boosting
algorithms achieve the three smallest average ranks. From this
point of view, only CSB2, AdaC2, and RealBoost with Platt
calibration can be seen as competitive with CS-Ada, CS-Real,
and CS-Logit. But the worse of the latter has an average rank
15% smaller than the best of the former.

The average ranks, across datasets, for the five detection
rates considered, are presented in Table II. While the overall
conclusions are the same, note that AdaBoost, RealBoost, and
LogitBoost tend to rank lower (relative to their cost-sensitive
counterparts) as the detection rate increases. This follows from
their cost-insensitivity (despite Platt calibration and threshold
tuning). On the other hand, the ranks of CS-AdaBoost, CS-
LogitBoost and CS-RealBoost improve relatively. For exam-
ple, while the difference in rank between AdaBoost and CS-
AdaBoost is 7.25 − 6.1 = 1.15 at 85% detection rate, it
grows to 9.5− 5.2 = 4.3 at 95%. This confirms our previous
claim that threshold manipulation produces inferior results as

the distance between cost-sensitive and insensitive boundaries
increases.

To investigate the impact of the choice of weak learners
in these conclusions, we performed the same experiments
with decision trees [45] as weak learners. Following [18],
we used four terminal node trees. To enable a comparison
to the results achieved with decision stump methods, we
limited the total number of features to 50. Since each tree
contains three features, this implies 50/3 ≈ 17 weak learners
per classifier. The implementations of CS-AdaBoost and CS-
RealBoost relied on (42) and (44), respectively, as tree splitting
criteria. All other aspects were identical to [18]. CS-Logit was
not considered since it would require the implementation of
regression trees, instead of classification trees that we have
used. Tables III and IV compares the results obtained for the
various cost sensitive boosting algorithms, datasets, and detec-
tion rates. For completeness, we also implemented a detector
based on Random Forests [46] of 17 four terminal node trees
and Platt calibration, which did not prove competitive with
the proposed algorithms. There is no significant qualitative
difference between the results of tables I-II, and III-IV, sug-
gesting that the proposed cost-sensitive boosting algorithms
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TABLE II
AVERAGE CLASSIFIER RANK, ACROSS TEN UCI DATASETS, FOR FIVE DETECTION RATES.

Det% CSAda Ada CSLog Log CSReal Real CSB0 CSB1 CSB2 AdaC2 AdaC3 SVML SVMG
85% 6.1 7.25 5.6 6.65 5.3 5.75 8.85 10.35 6.7 7.8 7.85 8.15 7.45

87.5% 5.2 7.2 5.9 6.45 5.5 6.25 8.5 10.7 6.25 6.9 8.7 8.05 7.75
90% 5.45 7.55 5.65 7.5 4.3 6.6 7.9 12.1 6.9 6.6 8.55 7.8 7.7

92.5% 5.2 7.9 5.8 7.55 4.95 6.6 8.0 11.6 6.25 6.15 8.3 7.8 8.05
95% 5.2 9.5 5.25 7.85 5.05 5.2 7.95 10.65 7.25 6.0 8.15 8.55 7.9

have superior performance independently of the weak learner
adopted. In summary, with either decision stumps or trees, the
proposed algorithms outperform the state-of-the-art in cost-
sensitive boosting.

2) Face detection: UCI datasets are sometimes criticized
as too small, or low-dimensional, to allow meaningful conclu-
sions. We repeated the comparisons above on the real, large-
scale, large-dimensional problem of face detection. This prob-
lem is also becoming an important area of application for cost-
sensitive boosting, given the widespread use of boosting for
the design of detector cascades [28]. We emphasize, however,
that the goal here is not to compete with algorithms for cascade
design, but simply compare cost-sensitive boosting algorithms.
While cost-sensitive boosting can be used to design cascade
nodes, the overall cascade design requires the solution of
additional problems, such as determining the optimal cascade
architecture (number of nodes and computation per node),
whose solution is beyond the scope of this work. Further-
more, cascade (or face detector) design frequently involves
steps, such as bootstrapping (automated collection of negative
examples) or manual tuning of classifier parameters, that make
objective comparisons of algorithms quite difficult. Our goal is
simply to exploit the high-dimensionality of the face detection
data (50, 000 features) and the availability of a large dataset
to compare cost-sensitive boosting algorithms in a realistic
scenario.

These experiments were based on the experimental protocol
of [28]: a face database of 9832 positive and 9832 negative
examples, and weak learners based on a combination of
decision stumps and Haar wavelet features. 6000 examples
were used per class for training, and the remaining 3832
for testing, and all boosting algorithms were trained for
100 iterations. Given the computational complexity of these
experiments, we restricted the comparison to CS-Ada and the
previously proposed cost-sensitive boosting algorithms (CSB0,
CSB1, CSB2, AdaC2, AdaC3). All classifier parameters were
tunned with the cross validation procedure described at the
start of this section. The detection rate and number of false
positives of each method are shown in Table V, for each
of the cross-validation detection rates. The number above
each pair of columns is the target detection rate (used for
cross-validation), while the detection rate and number of false
positives measured on the test set are shown in the columns
themselves. Note that all methods maintain a test detection
rate very similar to the target, CS-Ada achieves the best
performance, and only that of CSB2 is comparable. These
results illustrate the importance of choosing the confidence
α optimally, at each iteration. Methods that ignore α in the
weight update rule (CSB0 and CSB1) have extremely poor

performance. Methods that update α but are not asymptotically
optimal (AdaC2, AdaC3) perform worse than CSB2, which
relies on the α updates of AdaBoost.

C. Car detection

We finish by investigating how the simple application of the
proposed cost-sensitive boosting algorithms fare against state-
of-the-art object detection algorithms in computer vision. For
this, we selected the problem of car detection on the popular
UIUC Car dataset [29]. This is a dataset that precisely defines
all variables of the experimental evaluation, e.g. a rigorous
procedure for counting detections and false positives (which
is not the case in [28]), and allows rigorous comparisons
to a large literature. It is also a challenging data set, in
the sense that only 500 positive and 500 negative examples
are available for training. Unfortunately, not all results in
the literature comply with the original protocol. For example
classifiers are sometimes trained with much larger datasets,
and significant variations in error rate can be achieved by
optimizing the post-processing procedure (non-maximum sup-
pression) to eliminate the false-positives that always occur
in the neighborhood of a correct detection. Hence, even for
this thoroughly standardized dataset, assessments of detector
performance based on comparison of published results have
to be taken with caution. We will discuss these problems in
detail below.

We compared CS-Ada to both regular AdaBoost and a
number of methods previously proposed in the literature.
All images were re-scaled to 20x50 pixels, and detection
based on a pool of 162, 000 Haar features [28]. CS-Ada was
used to learn 300 feature detectors, with the cross-validation
procedure described at the start of this section. As is advised
for this dataset, the resulting detectors were tested with the
neighborhood suppression algorithm proposed in [29] and
performance quantified by the EER. For completeness, we also
indicate the maximum F-measure and corresponding detection
and false-positive rates, although these statistics are not always
reported in the literature. The F-measure is the weighted
harmonic mean of precision and recall, summarizing the trade-
off between these two statistics at each point of the ROC
curve. The maximum F-measure, and the reported detection
and false-positive rates, are those observed at the point where
this trade-off is optimal. We limited the comparison to the
single scale test set, with the results of Table VI.

The left side of the table presents results of methods that
rigorously follow the experimental set up of [29]. Agarwal and
AdaBoost classify rectangular image patches and can be seen
as template classifiers. However, because they rely on highly
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TABLE III
AVERAGE NUMBER OF ERRORS FOR EACH CLASSIFIER AND UCI DATASET, ACROSS FIVE DETECTION RATES USING DECISION TREES. THE LOWEST

AVERAGE ERROR ACHIEVED ON EACH DATASET IS SHOWN IN BOLDFACE. RANK INDICATES THE AVERAGE RANKING OF THE CLASSIFIER ACROSS

DATASETS, AND #WINS IS THE NUMBER OF DATASETS ON WHICH A COST SENSITIVE BOOSTING ALGORITHM ACHIEVED LOWER ERROR THAN ALL

PREVIOUS BOOSTING METHODS.

pima liver wdbc sonar wpbc Wisc echo heart tic survival Rank #w
CS-Ada 230.6 129.4 42.2 63 95 37 46 49.4 343.8 129.6 2.2 6
CS-Real 252.2 148 47.2 62.6 95.4 33.2 51 80 297.8 145 3.2 3

CSB0 252 178 42.6 91.6 123.6 46.6 57 74.4 238.2 109 4.4
CSB1 313.4 176 50.4 88.6 112.8 40 62 138.4 490.2 161.6 6.4
CSB2 299.8 162.8 57.8 83 117 32 50 103 342.2 131.2 4.7
AdaC2 278.4 151.4 49.4 81 114.8 37.4 64 85.8 185.2 111.8 4.2
AdaC3 272 163 43 82.6 118 26.4 47 82.4 169.8 121.8 3.4
RForest 364.2 189 69.6 102.8 124.4 37.8 60 117.6 546 186 7.5

TABLE IV
AVERAGE CLASSIFIER RANK, ACROSS TEN UCI DATASETS, FOR FIVE DETECTION RATES USING DECISION TREES.

CS-Ada CS-Real CSB0 CSB1 CSB2 AdaC2 AdaC3 RForest
85% 2.3 2.55 4.85 6.25 4.2 4.6 4.0 7.25

87.5% 2.4 3.05 4.7 6.35 3.95 4.3 4.05 7.2
90% 2.65 3.6 4.05 6.5 4.9 4.4 2.7 7.2

92.5% 1.85 3.55 4.3 6.05 5.1 4.4 3.25 7.5
95% 2.2 4.55 4.25 6.0 4.8 3.9 3.1 7.2

TABLE V
FACE DETECTION RATE AND NUMBER OF FALSE POSITIVES AT VARIOUS CROSS-VALIDATION DETECTION RATES.

85% 87.5% 90% 92.5% 95%
Method Det% #FP Det% #FP Det% #FP Det% #FP Det% #FP
CS-Ada 85.2 22 87.44 28 90.37 34 92.64 52 95.25 113

CSB2 85.2 24 87.7 33 90.29 53 92.82 78 95.14 152
AdaC2 85.54 137 87.91 175 90.52 239 92.77 315 95.22 437
AdaC3 85.93 202 88.39 340 91.96 409 93.21 412 95.25 538
CSB0 86.01 276 88.12 325 90.63 418 92.95 592 97.57 933
CSB1 85.12 689 87.73 803 90.29 967 92.72 1142 95.12 1429

TABLE VI
PERFORMANCE ON UIUC CAR DATASET, SINGLE SCALE TEST SET. LEFT SIDE OF THE TABLE PRESENTS METHODS THAT RIGOROUSLY FOLLOW THE

EXPERIMENTAL SET UP OF [29] † : USE VARIATIONS OF POST-PROCESSING. � : USE EXTENDED TRAINING SET. N.R: NOT REPORTED.

Method EER F-Measure Det% #FP Method EER F-Measure Det% #FP
CS-AdaBoost 93.5% 93.50% 93.5% 13 Mutch† [47] 99.94% N.R N.R N.R
Shotton [48] 92.8% N.R N.R N.R Wu� [49] 97.5% N.R N.R N.R

Bar-Hillel [50] 92.4% N.R N.R N.R Leibe+MDL†� [51] 97.5% N.R N.R N.R
Leibe[51] 91% N.R N.R N.R Schneidermann� [52] 97% N.R N.R N.R
AdaBoost 90% 90.27% 90.5% 20 CS-AdaBoost† 95.5% 95.26% 95.5% 9

Fergus [53] 88.5% N.R N.R N.R Grabner†� [54] 93% 93.5% N.R N.R
Agarwal [29] 79% 77.08% 76.5% 44 AdaBoost† 92.5% 92.23% 92.5% 15

localized features, they can also be seen as either learning a
rough object segmentation (object outline within the patch), or
a representation of the object as a spatial configuration of fea-
tures. Both ideas have been explored in detail in the literature,
with classifiers that explicitly segment the object to detect [51],
[48], [55], [49], [56], learn configurations of its parts [53], [50]
or both [48], [49]. Training such representations is manually
intensive (e.g. requires precisely segmented examples) and
the resulting decision rules have far more computation than
those of the AdaBoost/Haar combination. Yet, at least when
the protocol of [29] is followed precisely (left half of table),

there is little evidence that they have benefits. On the contrary,
simply replacing AdaBoost by CS-AdaBoost produces the best
overall performance.

There are a number of ways in which performance can be
improved by relaxing the experimental protocol. One popular
modification is to improve the post-processing of the detector
output, so as to eliminate spatially adjacent detections (non-
maximum suppression). Methods that use variations of post-
processing are identified in the right-side of the table with a †.
These variations can lead to a dramatic performance increase.
For example, Leibe et al. report an improvement from 91%
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to 97% EER by introducing their MDL procedure [51]. For
the classifiers that we implemented, the simple extension of
the suppression window from 71 to 140 pixels (similar to [47]
which used 111 pixels for their detector) led to an improve-
ment from 90% to 92.5% for Adaboost and from 93.5% to
95.5% for CS-Adaboost. We have not attempted to optimize
performance any further in this way. Another popular perfor-
mance enhancement strategy is to rely on an extended training
set. Variations range from adopting completely different sets of
positive and negative training examples [51], to extended sets
of positives and negatives (the dataset of [29] plus additional
data) [49], to the same set of positives but an extended set of
negatives [54], [52]. Methods that rely on such extensions are
identified by a 
 in the table. Given the reduced size of the
UIUC car dataset, any of these extensions is likely to improve
performance significantly. Unfortunately, they also make it
virtually impossible to compare the underlying classification
algorithms in an objective manner.

We emphasize that our claim here is not that the combina-
tion of CS-AdaBoost and Haar features is the ultimate solution
for object detection. In fact, two of the top performing algo-
rithms in each of the sides of Table VI - Bar-Hillel [50] and
Wu [49] - rely on the combination of boosting and other image
representations (weak learners). It is likely that they could
also benefit from the cost-sensitive extensions proposed in this
work. What our results show is that 1) for object detection, CS-
AdaBoost can lead to substantial performance improvements
over AdaBoost, and 2) the combination of CS-AdaBoost and
Haar wavelets is at least competitive with the state-of-the-
art methods in the literature. This is not insignificant, since
most of these competitors involve special purpose features,
segmentation, or other vision operations which cost-sensitive
boosting does not have access to, and are expensive. On the
other hand, the architecture used with cost-sensitive boosting
is completely generic, e.g. identical to that used by [28] for
face detection.

VI. CONCLUSION

We have presented a novel framework for the design of
cost-sensitive boosting algorithms. The framework is based
on the identification of two necessary conditions for the
design of optimal cost-sensitive learning algorithms: that 1)
expected losses must be minimized by optimal cost-sensitive
decision rules, and 2) empirical loss minimization must em-
phasize the neighborhood of the target cost-sensitive boundary.
These enable the derivation of cost-sensitive boosting losses
which (similarly to the original cost-insensitive ones) can be
minimized by gradient descent, in the functional space of
convex combinations of weak learners, to produce boosting
algorithms. The proposed framework was used to derive cost-
sensitive extensions of AdaBoost, RealBoost and LogitBoost.
Experimental evidence, derived from a synthetic problem,
standard data sets, and the computer vision problems of face
and car detection, was presented in support of the cost-
sensitive optimality of the new algorithms. The performance of
the latter was also compared to those of various previous cost-
sensitive boosting proposals (CSB0, CSB1, CSB2, AdaC1,

AdaC2, AdaC3 and AdaCost) as well as the popular combi-
nation of large margin classifiers and probability calibration.
Cost-sensitive boosting was shown to consistently outperform
all other methods tested. In the future, we plan to investigate
the application of the cost-sensitive boosting algorithms now
introduced to the fully automated design of optimal object
detection cascades.

APPENDIX I
PROOF OF LEMMA 2

To find the minimum of the cost-sensitive extension of the
exponential loss of (32) it suffices to search for the the function
f(x) of minimum expected loss conditioned on x

le(x)=EY |X

[
I(y = 1)e−y.C1f(x) +I(y = −1)e−y.C2f(x)|x

]
=PY |X(1|x)e−C1f(x) + PY |X(−1|x)eC2f(x).

Setting derivatives to zero

∂le(x)

∂f(x)
=−C1PY |X(1|x)e−C1f(x) + C2PY |X(−1|x)eC2f(x)

= 0 (56)

it follows that
C1PY |X(1|x)

C2PY |X(−1|x)
= e(C1+C2)f(x) (57)

and

f(x) =
1

C1 + C2
log

PY |X(1|x)C1

PY |X(−1|x)C2
. (58)

It is straightforward to show that the second derivative is non-
negative, from which the loss is minimized by f(x).

To find the minimum of the cost sensitive extension of the
binomial loss of (33) it suffices to search for the the function
f(x) of minimum expected loss conditioned on x

lb(x)=−EY |X[y′ log(pc(x)) + (1− y′) log(1− pc(x))|x]

=−PY |X(1|x) log(pc(x))− PY |X(0|x) log(1− pc(x))

with pc(x) given by (34). For this, we first compute the
minimum with respect to pc(x), which is given by

∂lb(x)

∂pc(x)
=−PY |X(1|x)

1

pc(x)
+ PY |X(0|x)

1

1− pc(x)
= 0(59)

or
log

pc(x)

1− pc(x)
= log

PY |X(1|x)

PY |X(0|x)
.

Using (34), this is equivalent to

2(γf(x) + η) = log
PY |X(1|x)

PY |X(0|x)
,

or
f(x) =

1

C1 + C2
log

PY |X(1|x)C1

PY |X(0|x)C2
.

Since ∂2lb(x)
∂pc(x)2 ≥ 0 and pc(x) is monotonically increasing on

f(x) this is a minimum.
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APPENDIX II
PROOF OF RESULT 3

From (32) the cost function can be written as

J [f ] = EX,Y [ I(y = 1) exp(−C1f(x)) +

I(y = −1) exp(C2f(x))]

and the addition of the weak learner G(x) = αg(x) to the
predictor f(x) results in

J [f + αg] = EX,Y [ I(y = 1)w(x, 1) exp(−C1αg(x)) +

I(y = −1)w(x,−1) exp(C2αg(x))]

with

w(x, 1) = exp(−C1f(x)) w(x,−1) = exp(C2f(x)).

Since J [f + αg] is minimized if and only if the argument of
the expectation is minimized for all x, the direction of largest
descent and optimal step size are the solution of

(αm, gm(x)) =

arg min
α,g(x)

EY |X

[
I(y = 1)w(x, 1)e−C1αg(x)

+I(y = −1)w(x,−1)eC2αg(x)|x
]
.

Noting that

EY |X

[
I(y = 1)w(x, 1)e−C1αg(x)

+I(y = −1)w(x,−1)eC2αg(x)|x
]

= EY |X

[
I(y = 1)I(g(x) = 1)w(x, 1)e−C1α+

I(y = 1)I(g(x) = −1)w(x, 1)eC1α +

I(y = −1)I(g(x) = 1)w(x,−1)eC2α +

I(y = −1)I(g(x) = −1)w(x,−1)e−C2α|x
]

= EY |X

[
I(y = 1)I(g(x) = −1)w(x, 1)(eC1α − e−C1α)

+I(y = 1)w(x, 1)e−C1α +

I(y = −1)I(g(x) = 1)w(x,−1)(eC2α − e−C2α)

+I(y = −1)w(x,−1)e−C2α|x
]

= PY |X(1|x)w(x, 1)I(g(x) = −1)(eC1α − e−C1α)

+PY |X(1|x)w(x, 1)e−C1α +

PY |X(−1|x)w(x,−1)I(g(x) = 1)(eC2α − e−C2α)

+PY |X(−1|x)w(x,−1)e−C2α

it follows that

(αm, gm(x)) =

arg min
α,g(x)

{
P

(w)
Y |X(1|x)I(g(x) = −1)(eC1α − e−C1α)

+P
(w)
Y |X(1|x)e−C1α

+P
(w)
Y |X(−1|x)I(g(x) = 1)(eC2α − e−C2α)

+P
(w)
Y |X(−1|x)e−C2α

}
where

P
(w)
Y |X(y|x) =

PY |X(y|x)w(x, y)∑
y∈{1,−1} PY |X(y|x)w(x, y)

are the posterior estimates associated with a sample reweighed
according to w(x, y). Hence, the weak learner of minimum
cost is

(αm, gm) =

arg min
α,g

EX

{
P

(w)
Y |X(1|x)I(g(x) = −1)(eC1α − e−C1α) +

P
(w)
Y |X(1|x)e−C1α +

P
(w)
Y |X(−1|x)I(g(x) = 1)(eC2α − e−C2α) +

P
(w)
Y |X(−1|x)e−C2α

}
and, replacing expectations by sample averages,

(αm, gm) = arg min
α,g

[
(eC1α − e−C1α) · b + e−C1α · T+

+(eC2α − e−C2α) · d + e−C2α · T−
]
,

with the empirical estimates T+, T−, b and d of (40) - (41).
Given g(x), and setting the derivative with respect to α to zero

∂

∂α
= C1(e

C1α + e−C1α) · b− C1e
−C1α · T+ +

C2(e
C2α + e−C2α) · d− C2e

−C2α · T− = 0

the optimal step size α is the solution of

2C1 · b · cosh(C1α) + 2C2 · d · cosh(C2α) =

C1 · T+ · e
−C1α + C2 · T− · e

−C2α.

APPENDIX III
PROOF OF RESULT 4

From (32) the cost function can be written as

J [f ] = EX,Y [ I(y = 1) exp(−C1f(x)) +

I(y = −1) exp(C2f(x))]

and the addition of the weak learner G(x) to the predictor
f(x) results in

J [f + G] = EX,Y [ I(y = 1)w(x, 1) exp(−C1G(x)) +

I(y = −1)w(x,−1) exp(C2G(x))]

with
w(x, 1) = exp(−C1f(x)) (60)

and
w(x,−1) = exp(C2f(x)). (61)

Since J [f + G] is minimized if and only if the argument of
the expectation is minimized for all x, and assuming that the
weak learners depend on x only through some feature φ(x),
the optimal weak learner is the solution of

Gφ(x) = arg minG EY |X[I(y = 1)w(x, 1) exp(−C1G(x))

+I(y = −1)w(x,−1) exp(C2G(x))|x]

= arg minG PY |X(1|φ(x))w(x, 1) exp(−C1G(x))

+PY |X(−1|φ(x))w(x,−1) exp(C2G(x))

= arg minG P
(w)
Y |X(1|φ(x)) exp(−C1G(x))

+P
(w)
Y |X(−1|φ(x)) exp(C2G(x))
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where

P
(w)
Y |X(y|φ(x)) =

PY |X(y|φ(x))w(x, y)∑
y∈{1,−1} PY |X(y|φ(x))w(x, y)

are the posterior estimates associated with a sample reweighed
according to w(x, y). Setting the derivatives of the cost to zero
it follows that

Gφ(x) =
1

C1 + C2
log

P
(w)
Y |X(1|φ(x))C1

P
(w)
Y |X(−1|φ(x))C2

.

The optimal feature φ∗ is the one of smallest minimum cost

φ∗ = arg min
φ

J [f + Gφ]

= arg min
φ

EX,Y [I(y = 1)w(x, 1) exp(−C1Gφ(x)) +

I(y = −1)w(x,−1) exp(C2Gφ(x))]

= arg min
φ

⎡
⎣∑

i∈I+

w(xi, 1) exp(−C1Gφ(xi))+

∑
i∈I−

w(xi,−1) exp(C2Gφ(xi))

⎤
⎦ .

Once Greal
m (x) is found, the weights are updated so as to

comply with (60) and (61), i.e.

w(x, 1) ← w(x, 1) exp(−C1Gφ∗(x))

and
w(x,−1) ← w(x,−1) exp(C2Gφ∗(x)).

APPENDIX IV
PROOF OF RESULT 5

Rewriting the negative log-likelihood as

lb[y
′, f̂ (m)(x)] =

−EX,Y

[
y′ log

pc(x)

1− pc(x)
+ log(1− pc(x))

]

and using (34), it follows that

lb[y
′, f̂ (m)(x)] = −EX,Y

[
2y′(γf̂ (m)(x) + η)

− log
[
1 + e2(γf̂(m)(x)+η)

]]
.

This loss is minimized by maximizing the conditional expec-
tation

−lb[y
′, f̂ (m)(x)|x] =

EY |X

[
2y′(γf̂ (m)(x) + η)− log

[
1 + e2(γf̂(m)(x)+η)

]]
= 2EY |X[y′|x](γf̂ (m)(x) + η)− log

[
1 + e2(γf̂(m)(x)+η)

]
for all x, i.e. by searching for the weak learner G(x) that
maximizes the cost

J [f̂ (m)(x) + G(x)] = −lb[y
′, f̂ (m)(x) + G(x)|x].

The maximization is done by Newton’s method, which re-
quires the computation of the gradient

∂J [f̂ (m)(x) + G(x)]

∂G(x)

∣∣∣∣∣
G(x)=0

= 2γ(EY |X[y′|x]− pc(x))

and Hessian

∂2J [f̂ (m)(x) + G(x)]

∂G(x)2

∣∣∣∣∣
G(x)=0

= −4γ2pc(x)(1− pc(x))

leading to a Newton update

G(x) =
1

2γ
EY |X

[
y′ − pc(x)

pc(x)(1− pc(x))

]
.

This is equivalent to solving the least squares problem

min
G(x)

EY,X

[(
1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2
]

,

and the optimal weak learner can, therefore, be computed with

G∗ = min
G

∫
PX(x)

1∑
y′=0

PY |X(y′|x)

(
1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2

dx

= min
G

∫
PX(x)

1∑
y′=0

PY |X(y′|x)w(x)∑1
j=0 PY |X(j|x)w(x)(

1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2

dx

= min
G

∫
PX(x)

1∑
y′=0

P
(w)
Y |X(y′|x)

(
1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2

dx

= min
G

E
(w)
Y,X

[(
1

2γ

y′ − pc(x)

pc(x)(1− pc(x))
−G(x)

)2
]

which is the weighted least squares regression of zi to xi using
weights wi, as given by (49) and (50). The optimal feature is
the one of smallest regression error.
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