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ered to play a prominent causative role in the development of
various hepatic disorders. Antioxidants have been effectively
demonstrated to protect against hepatic damage. Hydrogen
(H2), a new antioxidant, was reported to selectively reduce the
strongest oxidants, such as hydroxyl radicals (�OH) and peroxyni-
trite (ONOO�), without disturbing metabolic oxidation–reduction
reactions or disrupting ROS involved in cell signaling. In place of
H2 gas, hydrogen-rich saline (HS) may be more suitable for clin-
ical application. We herein aim to verify its protective effects in
experimental models of liver injury.
Methods: H2 concentration in vivo was detected by hydrogen
microelectrode for the first time. Liver damage, ROS accumula-
tion, cytokine levels, and apoptotic protein expression were,
respectively, evaluated after GalN/LPS, CCl4, and DEN challenge.
Simultaneously, CCl4-induced hepatic cirrhosis and DEN-induced
hepatocyte proliferation were measured.
Results: HS significantly increased hydrogen concentration in
liver and kidney tissues. As a result, acute liver injury, hepatic cir-
rhosis, and hepatocyte proliferation were reduced through the
quenching of detrimental ROS. Activity of pro-apoptotic players,
such as JNK and caspase-3, were also inhibited.
Conclusions: HS could protect against liver injury and also inhi-
bit the processes leading to liver cirrhosis and hepatocyte com-
pensatory proliferation.
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Introduction

Acute hepatic failure (AHF) is defined as the rapid onset of severe
hepatocellular dysfunction with poor prognosis. It frequently
results from hepatitis virus infection, the induction of drugs and
toxins, or hepatic ischemia–reperfusion injury. Oxidative stress
has been regarded as a major contributor to the development of
various hepatic disorders including acute hepatic failure, hepatic
fibrosis, and hepatic cancer [1–3]. Moreover, it also represents an
imbalance between the production of ROS and the activity of anti-
oxidant defense systems [4]. Earlier reports have demonstrated
that antioxidants were effective in protecting against hepatic dam-
age by inhibiting free radical generation or scavenging for free rad-
icals generated by other biochemical reactions [5,6].

Molecular hydrogen (H2), the lightest and most abundant
chemical element, has been defined as a novel antioxidant, which
selectively quenches detrimental ROS, such as �OH and ONOO�,
while maintaining metabolic oxidation–reduction reaction and
other less potent ROS, such as superoxide anion radical (O��2 ),
hydrogen peroxide (H2O2), and Nitric oxide (NO�) [7]. Hydrogen
acts as a reductant for molecules that are strongly pro-oxidant
[8,9]. Unlike most known antioxidants, which are unable to suc-
cessfully target organelles, hydrogen has advantageous distribu-
tion characteristics for its capability to penetrate biomembranes
and diffuse into the cytosol, mitochondria, and nucleus [10]. It
has been demonstrated that the inhalation of H2 gas can reduce
brain, liver, or heart ischemia–reperfusion injury as well as intes-
tinal graft injury, via its antioxidant effect [7,11–13]. Moreover,
inhalation of H2 gas was more efficacious than a treatment cur-
rently approved for cerebral infarction [7]. These findings indicate
that the beneficial effects of H2 could be used for the treatment of
hepatic and other diseases. However, in clinical application, inha-
lation of H2 gas is not convenient and is dangerous because of its
flammable and explosive nature even at a concentration of 4.7%
in air.

In contrast to H2 gas, HS (H2 saturated in saline) is easily
administered and is safe for clinical application. It has been
gen-rich saline in experimental liver injury in mice. J Hepatol (2010),
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reported that HS can prevent or reduce early pathological
changes and also lead to long lasting functional improvement
in neonatal hypoxia–ischemia rat models [14]. However, it
remains unclear whether HS has similar protective effects on
acute hepatic injury, and whether it can prevent ROS-induced cell
death in inflammation of the liver. In this study, we demon-
strated that HS could alleviate liver injury in experimental
Galn/LPS, CCl4, or DEN-induced AHF models, and revealed the
clinical potential of HS for preventive and therapeutic anti-oxida-
tive applications.
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Materials and methods

Preparation of hydrogen-rich saline

The detailed information for the preparation of HS was described in our previous
reports [15].

Animals

Male C57Bl/6 mice (20–25 g) were obtained from the Model Animal Research
Center of Nanjing University in Nanjing, China. They were maintained under con-
trolled conditions (25 �C, 55% humidity and 12 h day/night rhythm) and fed stan-
dard laboratory food. All experimental procedures were approved by the
Institutional Animal Care and Use Committee of Second Military Medical Univer-
sity (Shanghai, China).

Experimental model for hydrogen distribution studies in mice

Eight milliliter per kilogram HS or its control, NS, was injected into mice via the
peritoneal cavity. The mice were anesthetized with pentobarbital (0.7 lg/g body
weight, i.p.) and placed in supine position. An incision was made on the midline
of the abdomen under aseptic conditions. Heparin saline 0.5 ml (50,000 U/L) was
injected into the peritoneal cavity. Hydrogen microelectrode (dia. 50 lm) was
penetrated into the liver and kidney at a depth of 300 lm.

Mice model of hepatic failure

GalN (Sigma, USA) was administered i.p. at 800 mg/kg followed with lipopolysac-
charide treatment (LPS, i.p., 20 lg/kg; Sigma, USA). HS (8 ml/kg) or an equivalent
volume of NS as control was given intraperitoneally every 1 h after the adminis-
tration of GalN/LPS. After stimulation of GalN/LPS (800 vs. 20 lg/kg or 800 vs.
5 lg/kg body weight), survival rates of mice were measured (n = 15 each group).

CCl4 mixed with olive oil (1:19 v/v, 4 ml/kg) was gaged for acute hepatic
injury and cirrhosis (3 times/week, 12 weeks) model [16,17].

DEN (100 mg/kg; Sigma, USA) was injected intraperitoneally for acute hepatic
injury [18].

Either HS (8 ml/kg) or an equivalent volume of NS as control was given intra-
peritoneally every 3 h after the administration of CCl4 or DEN.

Histology of mice liver tissue

IHC analysis was performed with phospho-c-Jun antibody, F4/80 antibody, and a-
SMA antibody, using methods as described previously [19].
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Measurement of transaminase activities

Activities of serum aminotransferases (ALT and AST) were determined by an
automated procedure in the Department of Inspection, Eastem Hepatobiliary Sur-
gery Hospital.

Cytokine measurement in murine serum

Levels of TNF-a and IL-6 were measured with a commercial ELISA kit following
the instructions of the manufacturer (Dakewe, Shenzhen, China) (Synergy 2
Multi-Mode Microplate Reader, BioTek, USA).
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Analysis of hepatocyte apoptosis

Apoptotic hepatocytes were detected by terminal deoxynucleotidyl transferase
dUTP nick end labeling (TUNEL) (Olympus BX51, Olympus, Japan) staining
according to manufacturer’s recommendations of In Situ Cell Apoptosis Detection
kit (Keygen, Nanjing, China) (Synergy 2 Multi-Mode Microplate Reader, BioTek,
USA. Caspase-3 activities were measured using fluorometric caspase activity
detection kits (Keygen, Nanjing, China) (Synergy 2 Multi-Mode Microplate
Reader, BioTek, USA. The assays were performed as recommended by the
manufacturer.

Measurement of ROS and GSH

Liver cryosections prepared 5 h after GalN/LPS injection and 48 h after CCl4 lavage
were incubated with 2 mM dihydroethidine hydrochloride for 30 min at37 �C. Cells
staining positive for the oxidized dyes were identified by fluorescence microscopy
(Olympus IX70, Olympus, Japan). At the same time, liver homogenates were pre-
pared and analyzed for GSH content with a commercial ELISA kit (Jiancheng, Nan-
jing, China) according to the protocol provided by the manufacturer.

Analysis of liver fibrogenesis

mRNA was quantified by real-time PCR assay (7300 Real-Time PCR System,
Applied Biosystems, USA) using double-stranded DNA-binding dye SYBR green-I
(Trkara, Dalian, China), as described previously [20]. The expression of all the tar-
get genes was normalized to 18S. The liver sections were stained with picro-sirius
red for collagen distribution [21]. The content of hepatic hydroxyproline was
determined by using the hydroxyproline kit following the protocol provided by
the manufacturer (Genmed, Shanghai, China).

Western blot analysis

The anti-JNK, pJNK, PARP, a-SMA, and GAPDH, monoclonal antibodies were pur-
chased from Neomarker, Santacruz, Kangcheng for Sigma and Cell signaling. Pro-
tein concentration was determined by BCA method. Western blotting was
performed as previously described [20].

Detection of hepatocytes proliferation

Hepatocyte proliferation was measured by Edu incorporation 72 h after DEN
challenge. The assays were performed as recommended by the manufacturer of
Edu detection kits (Ribobio, Guangzhou, China) (Olympus IX70, Olympus, Japan).

Statistical analysis

All results were expressed as mean ± standard deviation (SD). Differences
between experimental and control groups were assessed by either the analysis
of variance (ANOVA) or nonparametric tests, as applicable, using SPSS 16.0 (SPSS,
Inc.). Recipient survival was plotted using the Kaplan–Meier method, and the dif-
ferences between groups were analyzed using the log-rank test. A p-value of less
than 0.05 was considered statistically significant.
Results

Intraperitoneal injection of HS significantly increased H2

concentration in liver and kidney tissues

The H2 levels in liver and kidney tissues were measured by H2

microelectrode (Denmark–Unisense). A linear correlation was
found between the current value of H2 microelectrode and hydro-
gen concentration (H2 concentration: 0–40 lM, R2 = 0.9977,
Fig. 1A). As shown in Fig. 1B and C, concentrations of molecular
H2 peaked approximately 5 min following HS injection in the liver
and kidney, and returned to normal levels 40 min later. These
results suggest that HS is an ideal tool for molecular H2 induction,
and intraperitoneal administration of HS could efficiently deliver
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Fig. 1. Concentration of hydrogen in mice abdominal organs and blood
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hydrogen into the liver and kidney. In addition, we measured the
pH values of HS and NS, and found no significant difference in
the pH levels of the two solutions (NS, 7.35 ± 0.02 vs. HS,
7.32 ± 0.03).

GalN/LPS-induced liver injury was reduced by HS treatment

The effect of HS was tested in a widely accepted model of fulmin-
ant hepatitis, i.e. in the model of GalN/LPS-induced liver injury.
HS (8 ml/kg) or an equivalent volume of NS as control was
injected every hour after GalN/LPS challenge. Liver injury was
strongly reduced as determined by measurement of serum trans-
aminase activities 5 h after GalN/LPS administration (Fig. 2A).
Histological examination of liver tissue by H&E staining revealed
a prominent preservation in the liver structure of HS-treated ani-
mals (Fig. 2B). To characterize the inflammatory infiltration, sec-
tions of liver were subjected to immunohistochemical (IHC)
staining to identify the presence and distribution of macro-
phages. As shown in Fig. 2C, GalN/LPS treatment resulted in the
accumulation of macrophages in close vicinity to injured hepato-
cytes. However, the infiltration of macrophages was blunted in
AHF mice followed with HS administration. In accordance with
histological and biochemical findings, cytokine expression of
injury markers was also blunted in HS-treated mice. As shown
in Fig. 2D, GalN/LPS-induced increment of pro-inflammation
cytokines TNF-a and IL-6 in serum was remarkably prevented
by treatment with HS. Furthermore, the mortality in HS treated
group with GalN/LPS-induced fulminant hepatic failure was
decreased to 46.7% (73% in NS group) at 10 h after GalN/LPS treat-
ment (Fig. 2E, left panel). Similarly, HS also reduced the mortality
of high dose GalN/LPS-treated mice (Fig. 2E, right panel).

These data demonstrate a notable improvement in the condi-
tion of mice with GalN/LPS-induced acute hepatic failure if fol-
lowed with HS administration, as compared with that of
control mice.

HS reduced ROS-induced pro-apoptotic signaling and hindered the
activation of JNK in GalN/LPS-challenged mice

As GalN/LPS-induced liver injury is characterized by apoptosis of
hepatocytes, the expression and activity of pro-apoptotic mole-
cules were examined 5 h after GalN/LPS treatment. The purpose
is to verify whether HS exerted its protective activity by prevent-
ing cell death. As shown in Fig. 3A and B, although the adminis-
tration of GalN/LPS resulted in a dramatic activation of caspase-3
and cleavage of PARP, these effects were markedly decreased in
the presence of HS. Similar results were also observed in liver tis-
sue samples by applying TUNEL-based IHC assay (Fig. 3C).

In the GalN/LPS model, TNF-a-induced ROS generation is the
major mediator leading to apoptotic liver injury [22]. To verify
whether the protective function of HS resulted from the reduc-
tion of ROS accumulation, we assessed the levels of hepatocyte
superoxides. Freshly frozen liver sections were stained with dihy-
droethidine (DHE), whose oxidation gives rise to the fluorescent
derivative ethidine [23]. GSH levels of fresh liver tissue were then
detected. As expected, the administration of HS remarkably
decreased the amount of DHE-positive hepatocytes and increased
the levels of GSH (Fig 3D and E). Similarly, serum ALT level
(Fig. 3F) was also reduced in GalN/LPS-sensitized mice fed with
the antioxidant BHA-supplemented diet. Consistent with this
notion, ROS-enhanced JNK activation, which contributed to liver
0 vol. xxx j xxx–xxx 3
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failure, was prevented by HS administration (Fig. 3G) or BHA diet
(data not shown). These data indicated that HS might exert its
4 Journal of Hepatology 201
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anti-apoptotic activity by preventing the effects of oxidative
stress and JNK signaling.
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HS attenuated acute liver injury in the CCl4 model of hepatitis

To examine whether HS also controlled ROS accumulation and in
turn attenuated liver injury, we injected HS via the peritoneal
into CCl4-treated mice. CCl4 challenge increased the serum levels
of ALT and AST by approximately 24- and 6-fold, respectively.
6 Journal of Hepatology 201
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These levels were markedly lowered after administration of HS
(Fig. 4A and B). Measurement of serum TNF-a and IL-6 also indi-
cated the protective effects of HS against the release of injury-
mediated cytokines (Fig. 4C and D). In addition, IHC and apoptosis
analysis revealed a decrease in the amount of macrophage infil-
tration and TUNEL-positive hepatocytes in the HS-treated group
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(Fig. 4E and F). Furthermore, the reduced accumulation of super-
oxides and an increase in GSH content were detected in livers of
CCl4-treated mice followed with HS administration (Fig. 4G and
H). Taken together, these data indicate that HS could attenuate
CCl4-sensitized acute liver injury.

Chronic CCl4 treatment-induced hepatic cirrhosis was alleviated in
the presence of HS

To investigate whether HS has protective effects against CCl4-
induced chronic liver injury and cirrhosis, collagen deposition,
and hepatic stellate cell (HSC) activation were examined between
groups treated with CCl4 plus NS or CCl4 plus HS injection. After
CCl4 administration, mice were injected intraperitoneally once
every day with a single dose of HS. As shown in Fig. 5A and B, sir-
ius red staining and hydroxyproline content gradually increased
after chronic CCl4 treatment, but were significantly reduced in
the HS injection group. Western blot and IHC analyses also
revealed a similar reduction of a-SMA expression in liver sections
(Fig. 5C and D). Furthermore, we examined the mRNA expression
of early markers of fibrogenesis, including collagen-a1 (encoded
by Col1a1) (Fig. 5E) and a-SMA (encoded by Acta2) (Fig 5F)
[24], and observed approximately 50% reduction upon HS injec-
tion in the CCl4 treatment model. These results suggest that HS
has a protective capability against CCl4-induced chronic liver
injury and cirrhosis.

HS reduced liver injury and hepatocyte proliferation in DEN-
challenged mice

DEN is the chemical procarcinogen that is widely used to induce
hepatocarcinogenesis in mouse and rat models. ROS accumula-
tion has been suggested to be a major contributor to DEN-
induced HCC by promoting inflammation and stimulating com-
pensatory proliferation [18,25]. As shown in Fig. 6A, serum ALT
and AST levels were increased upon DEN administration but
reduced after HS injection (HS vs. NS, ALT: 303.40/529.24 IU/L,
AST: 237.17/371.64 IU/L). The concentration of the tumor-pro-
moting cytokine IL-6 was also lower in the HS group than in
the NS group (Fig. 6B). In addition, IHC analyses revealed that
JNK activation was reduced in the DEN plus HS model (Fig. 6C).
This was detected by phosphorylation of c-Jun, a specific JNK sub-
strate, which mostly occurred in hepatocytes that were involved
in DEN metabolism and ROS production [3]. Interestingly, HS not
only reduced acute liver injury, but also inhibited hepatocyte
compensatory proliferation. As shown in Fig. 6D, the level of
Edu-positive hepatocytes was reduced in HS-treated mice 72 h
after DEN administration. Thus, HS has protective capability
against DEN-induced acute liver injury and compensatory
proliferation.
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Discussion

ROS, which include �OH, ONOO�, O��2 , H2O2, and NO�, are impor-
tant cytotoxic and signaling mediators in the pathophysiology
of inflammatory liver diseases [26,27]. Among them, �OH and
ONOO� are much more reactive than others and have been
regarded as major cytotoxic mediators of cellular oxidative dam-
age [28–30]. Previous studies have reported that H2 reacts only
with the strongest oxidants (�OH and ONOO�), which is advanta-
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geous for medical procedures, since H2 is mild enough not to dis-
turb metabolic oxidation reduction reactions or disrupt ROS
involved in cell signaling—unlike some antioxidant supplements
with strong reductive reactivity [7]. We now demonstrated that
hydrogen-saturated saline also prevents ROS accumulation, cyto-
kine production, and cell death in various types of liver injury.

Gas chromatography-based technology has been successfully
applied to examine the concentration of H2 in blood, and it has
been reported that dissolved H2 in arterial and venous blood
was increased by the inhalation of H2 or the administration of
H2-water [31]. It was supposed that the elevated H2 level in
serum might lead to the incorporation of H2 into organs, and thus
plays a pivotal protective role in oxidative stress-induced tissue
damage. The facts that H2 protected mitochondria and nuclear
DNA and that the amount of H2 dissolved in venous blood was
less than that in artery blood provided indirect evidences that
H2 could penetrate most membranes and diffuse into organelles.
However, there is a lack of direct evidence in vivo that the con-
centration of H2 was enhanced after H2 inhalation or HS
administration.

To verify whether the injection of HS could increase the organ
levels of H2, a real time dynamic method with glass-based H2

microelectrode was developed to accurately, continuously, and
directly monitor the concentration of H2 in abdominal organs
for the first time. After HS injection, H2 concentration in the liver
and kidney reached a peak 5 min later and gradually decreased to
normal levels after 40 min. The arterial/venous blood pH was also
measured after HS administration, and no significant difference
was observed between the HS and NS groups (Supplementary
Fig. 1), which suggested that HS treatment has no effect on the
blood PH. To our knowledge, it is a direct evidence of the diffu-
sion of H2 in the organs. These data also indicate that it is realiz-
able to prevent ROS accumulation by intraperitoneal
administration of HS in the organs, such as the liver and kidney.

Oxidative stress activates various kinds of apoptotic signaling
pathways, among which we focused particularly on JNK. This is
due to a number of recent reports which have shown that JNK
activation, following oxidative stress, induces apoptosis via acti-
vation of c-Jun, through the caspase-dependent mitochondria
pathway in the liver. In a model of fulminant liver failure
(GalN/LPS), a disease that is associated with many complications
and high mortality, administration of HS resulted in a marked
reduction of liver injury. ROS down regulation by HS or antioxi-
dant BHA, as shown here, led to reduced apoptotic activity (PARP
cleavage and caspase-3 activation) as well as decreased inflam-
matory cytokine release and tissue damage after GalN/LPS chal-
lenge. Importantly, phosphorylation, and consequent activation
of the pro-apoptotic kinase JNK, was blocked after HS administra-
tion (Fig. 3G) or BHA induction (data not shown). This indicated
that HS may be exerting its protective role by preventing the acti-
vation of the ROS-JNK-caspase-3 pathway. Moreover, the accu-
mulation of Kuffer cells in the liver (Fig. 2C) was also
attenuated after HS injection, which may lead to further decrease
of inflammatory cytokine (such as TNF-a, IL-6) production and
release.

CCl4 and DEN-sensitized AHF are the other two settings where
ROS accumulation was thought to be responsible for liver damage
[18,25,32,33]. As shown in Figs. 4 and 6, HS resulted in a similar
beneficial outcome as seen in the model of GalN/LPS-induced
liver damage by scavenging for ROS and inhibiting the activation
of its downstream JNK pathway (data not shown). The level of
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serum transaminases and the concentration of inflammatory
cytokines in serum were lower in the HS group than in its coun-
terpart NS group. Histopathological findings also demonstrate the
HS protective effects to AHF.

Liver cirrhosis is a common scarring response to all forms of
chronic liver injury and is always associated with inflammation
that contributes to fibrogenesis. The use of antioxidants, such
as SAMe and vitamin E, has been reported to successfully delay
the progress of hepatic cirrhosis and reduce liver damage [34].
In line with this notion, the effect of HS in the model of CCl4-
induced chronic liver damage was observed. Both the collagen
deposition and nodule number were inhibited in the presence
of HS. It is the first report of the protective role HS can play in
chronic liver injury, and suggests that HS could be used to pre-
vent and retard fibrogenesis in medical application. Further stud-
ies with other models of cirrhosis are warranted.

A causal link between ROS accumulation and cancer has been
proposed. Previous results obtained in a mouse model in which
HCC was induced by the chemical procarcinogen DEN suggest
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that DEN-induced oxidative stress leads to hepatocyte death,
cytokine release, compensatory proliferation, and eventually,
HCC development [35]. We now showed that HS could reduce
transaminase activities and inflammatory cytokine (IL-6) produc-
tion in DEN-induced liver injury. IL-6 is a multifunctional cyto-
kine, which is largely responsible for compensatory hepatocyte
proliferation that has a critical role in DEN-induced hepatocarci-
nogenesis [36]. Indeed, we also found the remarkable reduction
in DEN-induced hepatocyte proliferation in the HS group (Fig
6B). Further investigation on the contribution of HS to the devel-
opment of HCC should be performed.

In conclusion, we herein presented a novel antioxidant-HS,
which is easier and safer to apply than H2 gas, and could selec-
tively remove ROS. We examined the impact of HS in the inflam-
matory models of GalN/LPS, CCl4, and DEN challenge,
respectively. HS attenuates liver injury and also inhibits the pro-
cesses leading to liver cirrhosis and hepatocyte compensatory
proliferation. This reveals the potential application of HS to target
oxidative stress and alleviates liver injury clinically.
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