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Abstract –In recent study, the invariance of the phase of plane waves among all inertial frames
is challenged by a counter-example, that is, there is the negative frequency of plane waves in
the case of“superluminal” motion of the medium, where the four-vector (k, ω/c) of plane waves is
exceptionally not Lorentz-covariant. A new argument that the conventional invariance of the phase
of plane waves should be replaced by the invariance of the phase difference of plane waves among
all inertial frames is presented. Based on our argument, the explanation to the counter-example
is worked out. The result shows that the four-vector of plane waves is still Lorentz-covariant.

Introduction. – The phase of a plane wave among all
inertial frames is commonly considered to be a constant,
but it may be not always the case. In an EPL letter, Dr.
Young-Sea Huang has given a result, that is, according to
the usual argument of the invariance of the phase of plane
waves, one would get a negative value for the frequency
of light waves in the case that the speed of waves in a
medium less than the speed of that medium moving in the
direction opposite to the propagation direction of waves
which give rise to a conclusion that the four-vector (k, ω/c)
of plane waves is in general not Lorentz-covariant. The
invariance of the phase of plane waves among all inertial
frames is questionable [1]. Next, the conundrum of the
negative frequency of plane waves has been resolved in
another EPL letter [2]. However, we think its conclusion
is questionable. The reason is that in order to let the
frequency changes from negative value to positive value,
the direction of the wave vector and the direction of the
wave surfaces transport (i.e., the phase speed) point in
opposite directions in the case of “superluminal” motion
of the medium. This clearly does not meet the concept of
a plane wave.

In this letter, we re-investigate the reasons for the phase
invariance and point out that it is not accurate. How-
ever, based on Einstein’s Principle of the relativity, we
can prove that the phase difference between two wave sur-
faces among all inertial frames is the same. We strongly
suggest that the invariance of phase difference is employed
in Lorentz wave vector transformation instead of the con-
ventional phase invariance. Based on our new argument,
an explanation to the meaning of negative frequency of

light waves is presented. Furthermore, we conclude that
the four-vector (k, ω/c) of the propagation of monochro-
matic waves is still Lorentz-covariant, whether the phase
of plane waves among inertial frames is the same or not

Proof of the invariance of phase difference and
Physics meaning of negative frequency. – So far,
the invariance of the phase of plane waves has never been
exactly proved. The usual argument is as follows: “This
is because the elapsed phase of a wave is proportional to
the number of wave crests that have passed the observer.
Since this is merely a counting operation, it must be inde-
pendent of coordinate frame [3].” Although this is usually
written in the textbook, we think it is not accurate. Be-
cause the meaning of the phase invariance implies that the
instantaneous phase of one point in an inertial frame and
its instantaneous phase in another inertial frame are the
same, we cannot directly obtain the relationship of two
instantaneous phases on one common point in two inertial
frames according to the above reason. Next we will thus
analyze this relationship thoroughly.

Let us consider a three-dimensional plane light wave,
and suppose its wave function is sine. Assume two stan-
dard configuration inertial coordinates K and K′. The
frame K′ moves with constant speed V relative to the
frame K in the positive direction along the common x−x′

axis. Let their origins O and O′ coincide at the initial
t = t′ = 0; a medium is at rest in the frame K; the plane
light wave in the medium propagates in the direction of
wave vector k; and its phase velocity relative to the frame
K is up. Based on the present conditions, up is also the
velocity of energy (or ray) transport u, i.e., u = up. Ac-
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cording to the usual expression form of the phase of plane
waves, we have

Ψ(k · r, t) = k · r− ωt+ ϕ. (1)

Where it is assumed in the frame K: Ψ(k ·r, t) is the phase
of plane waves; r is the position vector; ϕ is an arbitrary
constant; ω is the angular frequency. From eq. (1), when
t = 0 and k · r = 0, Ψ(0, 0) = ϕ gives a wave surface,
denoted with W0. At time t the wave surface W0 will
travel to another position along the direction of k, but
the phase of W0 remains constant, that is, its phase is
still Ψ(W0) = Ψ(k · r = ωt, t) = ϕ. Next, let us consider
another arbitrary wave surface Wa, its phase is Ψ(Wa) =
Ψ(k · r = δ, 0) = δ + ϕ at t = 0 and its phase is still
Ψ(Wa) = Ψ(k · r = δ + ωt, t) = δ + ϕ at time t, where δ is
an arbitrary constant. Thus, at t = 0 the phase difference
between W0 and Wa is Ψ(Wa)−Ψ(W0) = δ and it is still
δ at time t. Therefore, we can obtain a useful result that
the phase difference between two arbitrary wave surfaces
in an inertial frame remains the same with respect to time.
Let us change perspectives. If the plane light wave vi-

bration in eq. (1) is observed from K′, should the phase
of the wave remain invariant quantity? We all know that
an instantaneous phase of waves is used to represent the
instantaneous vibration state of one point at a moment.
Einstein’s Principle of the relativity tells us that an instan-
taneous vibration state must be independent of coordinate
frame. For example, if an instantaneous state of a wave
surface is wave crest, as seen from K, then we must see
that its instantaneous state is also the wave crest, as seen
from K′. However, based on the conclusion, two phases
of one point as observed from K and K′, respectively, are
not necessarily strictly equal. In other words, based on
Principle of the relativity, we can conclude that the differ-
ence between the two phases may be an integral multiple
of 2π. Therefore, to meet sinΨ = sinΨ′, the respective
phase Ψ and Ψ′ of one point must satisfy eq. (2), as seen
from K and K′, i.e.,

Ψ′(k′ · r′, t′) = Ψ(k · r, t) + 2mπ. (2)

Where m is an arbitrary integer, r′ is the position vector;
k′ is the wave vector, as observed from K′. Because the
phase is not an absolute concept, its absolute quantity is
dependent on the initial phase. From this perspective it
is similar to the case of potential energy. Therefore, we
were possibly never able to prove Ψ = Ψ′. Only when
assuming the integer m = 0, the usual invariance of the
phase of plane waves is strictly correct.
However, if W0 is assumed to be a wave crest and Wa is

next wave crest, as seen from K, then Ψ(Wa)−Ψ(W0) =
2π. According to Principle of the relativity, we must also
see the two successive wave crests, as observed from K′.
Thus, there is still Ψ′(Wa) − Ψ′(W0) = 2π. The above
result is applicable in the situation of arbitrary phase dif-
ference also. Consequently, we have proven our argument,
that is, the phase difference between two arbitrary wave

surfaces (or two arbitrary points) among all inertial frames
is the same.

Now we will use the invariance of phase difference to
study Lorentz wave vector transformation. Here, we still
assume Wa is an arbitrary wave surface and Ψ(W0) = ϕ.
According to our the invariance of phase difference, the
phase difference between W0 and Wa, as seen from K and
K′, respectively, is the same, i.e.,

Ψ(Wa)−Ψ(W0) = Ψ′(Wa)−Ψ′(W0). (3)

To meet eq. (3), in eq. (2), the arbitrary integer m must
be remain the same with respect to time t′ and space r′.
In other words, there is the same integer m among all
phase Ψ′. However, the expression of the phase Ψ′ has
two possible forms, as seen from K′ [4]. Thus, we have

Ψ′(k′ · r′, t′) = ±(k′ · r′ − ω′t′) + ϕ+ 2mπ. (4)

Where ω′ is the angular frequency of the plane waves, as
seen from K′. Because at t = t′ = 0 W0 is passing through
the origins O and O′, the two phases of W0 are Ψ(W0) = ϕ
and Ψ′(W0) = ϕ+ 2mπ in K and K′, respectively. If the
wave surface Wa is passing through one coincident point
of K and K′ at time t and time t′, then the two phases
of Wa are described eqs. (1) and (4), respectively, i.e.,
Ψ(Wa) = Ψ(k·r, t) and Ψ′(Wa) = Ψ′(k′ ·r′, t′). Therefore,
on the basis of eq. (3) which describes the invariance of
the phase difference, we have

k · r− ωt = ±(k′ · r′ − ω′t′). (5)

Where the sign (+) must be taken when k · r > 0 and
k′ ·r′ > 0; or k·r < 0 and k′ ·r′ < 0 at t = t′ = 0, otherwise
the sign (−) must be used. This is because according to
the phase difference between two arbitrary wave surfaces
is independent of time, the eq. (5) must be satisfied when
t = t′ = 0. The distinction between the sign (±) is that
the two waves propagate in opposite directions. However,
we usually do not know the above conditions. But still we
may suppose that the sign (+) is correct, i.e.,

k · r− ωt = k′ · r′ − ω′t′. (6)

Even though eq. (6) has exactly the same form with the
conventional formula of the invariance of phase of plane
waves, it has the different physical meaning with the con-
ventional one. After using Lorentz wave vector transfor-
mation, if ω′ > 0 is obtained, then our hypothesis the sign
(+) is true, otherwise when ω′ < 0, it is false. Therefore,
we obtain the physics meaning of the negative frequency,
that is, when a wave vector and a negative frequency are
obtained from Lorentz wave vector transformation, the ab-
solute value of the negative frequency represents the true
frequency and its sign (−) represents that the direction
of the wave vector and its actual direction are in opposite
direction. At the same time, because eq. (6) has strictly
the same form with the conventional formula of the phase
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invariance , we conclude the four-vector (k, ω/c) of plane
waves is still Lorentz-covariant.
We will use the above analysis to explain the counter-

example discussed in the letter [1]. In the rest frame K of
the medium, a plane wave propagates in the direction of
the positive x -axis with the wave vector k relative to K.
Thus, we have k = (kx > 0, 0, 0), up = u = (ux > 0, 0, 0)
and ω = kxux. In the case of “superluminal” motion of
the medium, that is, ux < V < c. Where c is the ve-
locity of light in a vacuum, V is the relative velocity be-
tween two inertial frames K and K′. From Lorentz wave
vector transformation, we obtain k′ = [k′x = γkx(1 −
uxV/c

2) > 0, 0, 0] and ω′ = γω(1 − V/ux) < 0, where
γ = (1 − V 2/c2)−1/2. Based on our conclusion, we know
that the actual frequency is −ω′ = γω(V/ux−1) and true
wave vector is the −k′, as seen from K′. In other words,
the plane wave propagates in the direction of the negative
x′-axis with the wave vector −k′ relative to K′. In the
special condition, based on the motion of the wave sur-
face, we verify easily that the direction of the wave vector
is pointing in the direction of negative x′-axis, as observed
from K′, because ux < V .

The phase velocity and the ray velocity. – In eq.
(1), because u = up, ω = k · up = k · u. Thus, we may
use the ray speed to reformulate eq. (1), i.e.,

Ψ(k · r, t) = k · (r− ut) + ϕ. (7)

However, when the wave vibration in eq. (1) is observed
from K′, the direction of the velocity of energy (or ray)
transport u′ is generally not parallel to the direction of the
phase velocity up′, because the medium is in motion with
respect to the frame K′ [3]. Nevertheless, according to the
conclusion in the optics of crystals, the phase velocity up′

is the projection of the ray velocity u′ onto the direction of
the wave normal [4]. This conclusion is applicable in our
case. To demonstrate the effect, a two-dimensional sketch
of a plane wave traveling is shown in Figure 1. Because
the medium is at rest with respect to K, the ray speed u′

is not parallel to the phase speed up′, as observed from
K′. The wave surface W0 was passing the origins O′ and
O at time t′ = t = 0. W0 arrives at point P at other
t′, as seen from K′. Thus, the direction of O′P is the
direction of energy transport and t′ is the time of energy
transport. But the direction of O′A is the direction of the
wave surface W0 transport. Therefore, according to the
geometry relations in Figure 1, we obtain easily that up′

is the projection of u′ onto the direction of the k′. In other
words, we must obtain k′ · u′ ≡ k′ · up′ ≡ ω′ when u′ is
the ray velocity. Thus, we may also use the ray velocity
reformulate the eq. (6), i.e.,

k · (r− ut) = k′ · (r′ − u′t′). (8)

From eq. (8), we can calculate the ray velocity u′ if k is
given. However, this is inconsistent with Gjurchinovski’s
conclusion on the conundrum of the negative frequency of
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Fig. 1: The wave surface W0 of a plane light waves propagates
with the wave vector k relative to K from O to P and the
medium is at rest with respect to K, as seen from K. W0 prop-
agates with the wave vector k′ relative to K′ from O′ to P and
the medium is in motion with respect to K′, as seen from K′.
The ray speed u′ is not parallel to the phase speed up′.

plane waves [2]. But, it is evident that his conclusions
are not correct because it is based on a false assumption,
namely, k′ · u′ < 0.

Conclusion. – Although we were possibly never able
to prove the invariance of the phase of plane waves, we
have proven that the phase difference between two wave
surfaces among all inertial frames is the same. Based on
the invariance of the phase difference, we proved that the
phases of time and space (i.e. k · r − ωt or ωt − k · r)
among all frames are the same in spite of possible different
initial phases. According to the invariance of the phase
difference, the expressions of the phase difference are not
necessary to use strictly the same form. In other words,
when one of them is k ·r−ωt, another may be ω′t′−k′ ·r′.
If strictly the same form is employed, one might get the
negative frequency ω′ (or ω). However, it should be noted
that when the negative frequency appears, its absolute
value is the true frequency of plane waves and −k′ (or −k)
is actual wave vector. On the basis of the invariance of the
phase difference, we proved that the four-vector (k, ω/c)
of plane waves is still Lorentz-covariant. Based on eq. (8),
we can calculate the velocity of energy (or ray) transport.

Finally, it should be stressed here that the eqs. (5)
and (6) are applicable not only to relativistic plane waves
transformation, but also to classical plane waves transfor-
mation. This is because our formula of the invariance of
phase difference of plane waves has strictly the same form
with the conventional formula of the invariance of phase
of plane waves.
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