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Abstract Though several material properties such as hard-
ness, thermal conductivity, specific heat, strain hardening,
and thermal softening ability have been studied in terms of
influencing segmental or serrated chip formation process,
rare study about material brittleness affecting the chip
formation process has been carried out. In this paper, an
orthogonal cutting experiment with four steels with different
brittleness was carried out. The effect of workpiece material
brittleness on segmental chip formation and consequent chip
morphology was investigated. The experimental results show
that the material brittleness heavily affects chip formation
process and chip shape. A novel chip formation model was
developed to explain the mechanism of material brittleness
working on the chip formation process. The mechanism is
that material brittleness lowers the value of failure strain and
thus makes the maximum stress in flow stress curve occur
earlier, which leads to the catastrophic shear instability in
primary shear zone and consequent segmented chip.
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1 Introduction

Segmental chip is popular when machining the difficult-to-
machine materials, while some easy-to-cut materials can
form segmented chips as well at enough high cutting
speeds. Since the chip formation has significant influences
on the tool life, machined surface integrity, chip breaking,

material removal rate, and automatic manufacturing, the
mechanism of segmented chip formation has been a hot
topic in the machining fields for many years [1–3].

By now, there have been two predominant theories about
segmented chip formation, namely (a) periodic crack theory
and (b) thermoplastic shear instability theory.

Nakayama et al. in 1988 [4], Shaw and Vyas in 1989 [5]
suggested that segmented chip is due to the inherent
brittleness of workpiece on the basis of the chip pattern
observing. They presumed that crack initiates at the upside
of chip due to less normal stress there and propagates along
primary deformation zone down to tool tip. The crack closes
until the normal stress is large enough. Hua and Shivpuri in
2004 [6] supported the periodic crack theory by numerical
chip formation simulation results and argued that crack
initiates within the primary shear zone and propagates to the
tool tip at lower cutting speed, while to the free surface, at
higher cutting speed. More recently, Kountanya et al. in
2009 [7] carried out an experimental and simulative study on
steel 100Cr6 in its hardened state and found that shear crack
was the dominant mechanism causing chip to segment.

Recht in 1964 [8] developed a classical model for
describing catastrophic shear instability in machining and
explained that catastrophic shear would occur in plastically
deformed regions when the slope of the true stress true strain
curve became zero. He also formulated a critical cutting
speed Vcr (in terms of flow stress, thermal softening, strain
hardening), above which catastrophic shear instability will
initiate. In 1985, he introduced the adiabatic shear theory to
describe the chip segmentation process during hard cutting
[9]. Similar opinions can also be found in works of
Komanduri [10], Lee [11], and Gente and Hoffmeister [12].

Based on the two theories, the influences of material
properties on chip formation have been extensively studied.
Poulachon and Moisan in 2001 [13] investigated the effect

G. Su (*) : Z. Liu
School of Mechanical Engineering, Shandong University,
Jinan, Shandong 250061, China
e-mail: suguosheng@sina.com

Int J Adv Manuf Technol (2010) 51:87–92
DOI 10.1007/s00170-010-2619-1



of hardness on chip formation during cutting different heat-
treated steel 100Cr6 at different cutting speeds. They found
the tendency to form serrated chip indeed increased with
the increase of hardness. The FEM simulation results also
showed a better agreement with the experiments when
material hardness was considered as a parameter in material
model [14, 15]. Costin et al. in 1979 [16] carried out an
experimental study with AISI1018 cold-rolled steel and
1020 hot-rolled steel to verify the role of strain hardening
on formation of shear localization and suggested that larger
strain hardening slope tends to delay the onset of shear
localization and in turn the appearances of chip segmenta-
tion. Hartley et al. in 1987 [17] conducted dynamic torsion
experiments with steels and found that localization takes
place more readily in materials with low strain rate
sensitivity, low thermal conductivity, and high thermal
softening rate.

Numerical simulation of machining process has been
widely used to study the influences of material properties
on chip formation by varying one property parameter while
keeping the others constant. Martin Bäke carried out a
series of FEM simulations of chip formation to investigate
the influence of thermal softening parameter, strain hard-
ening exponent, and thermal conductivity on chip shape
[18, 19]. He suggested that the thermal softening and strain
hardening parameters influences chip shape mainly by
affecting the onset of the maximum of flow stress, that
the earlier the onset of the maximum of flow stress is, the
lower the cutting speed for serrated chip is required. As for
thermal conductivity, Martin Bäke’s FEM simulation results
showed that the degree of segmentation decrease with
increasing the thermal conductivity.

Though vast researches about material properties influenc-
ing the chip formation process have been experimentally or
numerically carried out, few has been conducted about how
material brittleness affects the chip formation, especially for

segmented or serrated chip formation. Material brittleness
greatly changes the value of material failure strain at which the
material loses its strength and shear instability initiates. This
shear instability, never mind if initiated by plastic fracture or
adiabatic shear, will lead to the onset of segmental chip [19].

In this paper, four steels with different value of
brittleness were used in an orthogonal cutting experiment.
The role of material brittleness on chip formation and final
chip morphology was validated. A model of chip formation
was proposed, and the mechanism of brittleness working on
chip shape was analyzed.

2 Experiment

2.1 Workpieces

Four steels were used for the experiment. They are
18CrNiWA, 40Cr, 30Cr2Ni2MoA, and 45# (AISI 1045)
which are marked as M1, M2, M3, and M4, respectively,
for short in following sections. The chemical compositions
of these steels are listed in Table 1. The major physical and
mechanical properties of these steels are listed in Table 2.

Elongation percentage (EP) of a material indicates the
plastic deformation ability of the material. It is used to
represent material brittleness in mechanical textbooks. The
lower the EP value means the brittler the material is. It can
be seen from Table 2 the brittleness order of the given
materials is M1>M2>M3>M4.

2.2 Experimental setups

The experimental materials were originally sticks in shape
with 100 mm in diameter. They were machined into disks by
electrical discharge machining (EDM) with 3 mm in
thickness. Since the surfaces machined by EDM changed

Materials C Si Mn Cr Ni P S Cu Mo

18CrNiWA 0.177 0.271 0.509 1.51 4.06 0.021 0.005 0.083 W1.34

40Cr 0.403 0.287 0.577 0.0937 0.055 0.0175 0.0082 0.077

30Cr2Ni2MoA 0.30 0.24 0.46 1.44 2.06 0.020 0.020 0.20 0.37

45# 0.47 0.26 0.70 0.008 0.004 0.019 0.030 0.006 As0.005

Table 1 Chemical composition
of experimental materials

Table 2 Physical and mechanical properties of experimental materials

Materials Yield strength (MPa) Tensile strength (MPa) Elongation percentage Thermal conductivity
(W/(m·K))

Specific heat
(J/(kg•K))

18CrNiWA 1,221 1,261 7 52.5 490

40Cr 633 917 10.5 42.6 473

30Cr2Ni2MoA 800 903 11.5 52.5 490

45# 450 720 16 50.2 480
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their matrices and in consequence their mechanical properties
by the heat due to electrical discharge, fine grinding were
carried out on each side of the specimens by 0.5 mm in depth.
The final specimens are thus 100 mm in diameter and 2 mm in
thickness (Fig. 1). Two drilled holes with 5 mm in diameter
with 14 mm distance from each other are symmetrically
about the center of the disk. The specimen was fixed on the
shaft with two screws with M4. The shaft shown in Fig. 1 is
32 mm in diameter and 60 mm in length. The shaft was
installed on the spindle of a milling machine whose type is
DEAWOOD VCE 500. The tool shank passed through the
rectangular hole in the center of the jig and was fixed by
three screws with M6. The insert used in the experiments is a
kind of MITSUBISHI coated insert type TCMT16T304
UC5115. After each specimen was machined the insert was
replaced by a new one to eliminate the influence of tool wear
on the experimental result. After all the assemblage, the
cutting edge should be parallel to the machine spindle axis to
ensure the orthogonal cutting condition.

The rake angle and uncut chip thickness were fixed at 0°
and 0.1 mm, respectively. The cutting speeds varied from 50
to 2,000 m/min. At each cutting speed, the specimen disk was
cut by a length of three revolutions (as one cutting circle) at the
current diameter d which would shrink with the cutting going
on and was resettled after each cutting circle. The cutting
width is 2 mm, and the cutting condition is dry cutting.

The chips generated were collected, and the mediate
portion of each was intercepted, mounted, polished, and
photoed by optical microscope.

3 Experimental results and discussion

On the base of chip optical photos, the chip segmentation
degree Gs defined as Gs= (h1−h2)/h1 (Fig. 2) was
measured. All measurements of the chip segmentation were

Fig. 1 Experimental setup

Fig. 2 Definition of segmentation degree Gs
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carried out starting at the thicker end of the chip for ten
neighboring segments.

Chips segmentation degree Gs vs. elongation percentage
δ curve at lower cutting speed Vc=100 m/min was obtained
as shown in Fig. 3. The chip segmentation degree Gs shows
an obvious dependency on the elongation percentage δ. It
can be seen from Fig. 3 that with the increase of δ from 7 to
16 Gs decreases from 0.5 to 0.11. At cutting speed Vc=
100 m/min, the Gs of materials M1, M2, M3, and M4 are
0.5, 0.33, 0.16, and 0.11, respectively. A sharp decline
occurs between EP 10.5 and 11.5. The decline rate becomes
smaller with the further increase of δ. The whole curve
shows a gradually declining trend along which the
segmentation becomes flatter.

On the other hand, at the constant segmentation degree
Gs=0.5, the curve of elongation percentage δ vs. cutting
speed Vc was obtained as shown in Fig. 4. It is obvious that
materials with different brittleness need to reach different
cutting speeds to catch the same segmentation degree Gs=
0.5, that with the increasing of elongation percentage δ the
required cutting speed Vc enhances too. At δ=7, the required

cutting speed is 90 m/min, while at δ=10.5, the cutting speed
Vc reaches to 200 m/min. There is a Vc sharp increase
between δ=10.5 and δ=11.5 at which the cutting speed is
500 m/min. And at δ=16, the cutting speed is 800 m/min.
The slope after δ=11.5 is larger than that before δ=10.5.

Four steels with different brittleness were used for this
experiment to verify the role of material brittleness on chip
formation, especially segmental chip formation. The results
of the experiment reveal that the brittler the material is, the
easier the material is to be segmented.

Materials with different brittleness have different failure
strain at which the materials will lose their strength. A
higher value of brittleness means a lower value of failure
strain. In Fig. 5, curve 1 is from a material with normal
failure strain. By comparison, curve 2 is from a brittler
material. The process of chip formation can be decomposed
into three stages (Fig. 5 I, II, III). With the advancing of
cutting tool, the strain of point A increases. For the case of
curve 1 though the strain reaches its maximum value at
stage III, the stress has not yet arrived its maximum value.
The deformation in the primary shear zone is analytically

Fig. 3 Segmentation degree Gs
vs. elongation percentage δ at
Vc=100 m/min

Fig. 4 Required cutting speed Vc vs. EP at Gs=0.5
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uniform, and the final chip is continuous (Fig. 5). But for
the curve 2, the strain of point A gets the maximum value
(failure strain) when it reaches stage II, and simultaneously,
the stress reaches the maximum value. With the further
advancing of cutting tool, the shear deformation will be
concentrated in the shear plane passing through point A due
to the decrease of the shear stress. The decrease of shear
stress will further make the deformation more concentrated.
Thus, the concentrated shear band formed and the final chip
looks segmented (shown as the figure enclosed in dashed
rectangle in Fig. 5).

So the mechanism of material brittleness working on
chip formation is that it lowers the failure strain and thus
the stress maximum in flow stress occurs earlier. The
smaller the material brittleness is, the earlier the stress
maximum appears. However if the material is too brittle,
the chip may be irregularly shaped fragments due to no
enough volume of chip accumulated before the main shear
plane fails. This type of chip is named by Astkahov
“irregularly broken chip” [20].

Materials with high hardness have been found easy to
produce segmental chips. This is because the brittleness
often increases when the hardness increases (the high
strength of hardened metals prefers the accumulation of chip
before the main shear plane catastrophically shears). Metals
such as steels, aluminum alloys at hardened state have been
found easy to produce segmental chips [21–23]. This is in
accordance with the result of the study of this paper.

However, material brittleness varies with temperature
and strain rate. Generally, material brittleness decreases
with temperature rising, while increases with the strain rate
increasing. The coupling between the temperature and the
strain rate makes the problem so complex that it is worth a
special study in another paper.

4 Conclusion

This work attempts to validate the effect of material
brittleness on segmental chip formation. Orthogonal ma-
chining experiments were conducted. The findings in this
study may be summarized as follows:

1. At fixed cutting speed, with the decrease of material
brittleness (that is the increase of material elongation
percentage), the chip segmentation degree decreases.

2. To reach the same chip segmentation degree, the required
cutting speed increases with the decrease of brittleness
(that is the increase of material elongation percentage).

3. The mechanism of material brittleness influencing chip
formation and resultant chip shape is that it lowers the
value of failure strain and thus makes the maximum
stress in flow stress curve occur earlier, which leads to
the catastrophic shear instability in primary shear zone
and consequent segmental chip.
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