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The Fractal Dimensions of Complex Networks *
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It is shown that many real complex networks share the distinctive features, such as the small-world effect and the
heterogeneous property of connectivity of vertices, which are different from the random networks and the regular
lattice. Although these feathers capture the important characteristic of complex networks, their applicability
depends on the style of networks. To unravel the universal characteristic many complex networks have in common,
we study the fractal dimensions of complex networks using the method introduced by Shanker. We find that the
average ‘density’ (p(r)) of complex network follows a better power-law function as a function of distance r with
the exponent dy, which is defined as the fractal dimension, in some real complex networks. Furthermore, we
study the relation between dy and the shortcuts Naqa in small-world network and the size N in regular lattices.
Our present work provides a new perspective to understand the dependence of the fractal dimension dy on the

complex network structure.

PACS: 89.75. Da, 05.45. Df

Recently, complex networks have been studied ex-
tensively in interdisciplinary fields including mathe-
matic, statistical physics, computer science, sociology,
economics, biology, etc. Complex networks are ubiq-
uitous in the real world, e.g., there are technological
networks such as the power grid,[!l biological networks
such as the protein interaction networks,!? and social
networks such as scientific collaboration networks, 34
and human communication networks,®! to name a few.

It has been shown that many real complex net-
works share distinctive characteristic properties that
differ in many ways from the random and regular
networks. Omne such property is the “small-world
effect” '] which means that the average shortest path
length between vertices in network is short, usually
scaling logarithmically with the size N of network,
while maintaining high clustering coefficient. A fa-
mous example is the so-called “six degrees of separa-
tion” in social networks.[ Another is the scale-free
property that many networks possess. The proba-
bility distribution of the number of links per node,
P(k) (also known as the degree distribution) satisfies
a power-law P(k) ~ k=7 with the degree exponent ~
in the range of 2 < v < 3.1 Although these proper-
ties capture the important characteristic of complex
networks, their applicability depends on the style of
networks. With the aim of providing a deeper under-
standing of the underlying mechanism of these com-
mon properties and unravelling the universal charac-
teristics that many complex networks possess, many
researchers have studied the self-similarity property
and the dimension of complex networks. Song et
al. discussed the mechanism that generates fractality,

i.e., the repulsion between hubs, using the concept of
renormalization.!® In order to unfold the self-similar
properties of complex networks, Song et al. calculated
the fractal dimension using a ‘box-counting’ method
and a ‘cluster-growing’ method, and found that the
box-counting method is a powerful tool for further in-
vestigations of network properties.[”! The degree expo-
nent vy can be related to a more fundamental length-
scale invariant property, characterized by the box di-
mension dg and the renormalized index dj, as a func-
tion of v =1+ dB/dk.[g] Kim et al.1911 studied the
skeleton and fractal scaling in complex networks using
a new box-covering algorithm that is a modified ver-
sion of the original algorithm introduced by Song et
al. What is more, Kim et al. discussed the difference
of fractality and self-similarity in scale-free networks,
which has been helpful for us to understand the com-
plex networks better.'? Zhou et al. proposed an al-
ternative algorithm, based on the edge-covering box
counting, to explore self-similarity of complex cellu-
lar networks.!'3] Furthermore, Lee and Jung studied
the statistical self-similar properties of complex net-
works adopting the clustering coefficient as the prob-
ability measure and found that the probability dis-
tribution of the clustering coefficient is best charac-
terized by the multifractal.l'¥ On the other hand,
several algorithms have been proposed to calculate
the fractal dimension of complex network, such as
the box-covering algorithm![!?l and the ball-covering
approach.l'®) Shanker defined the dimension of com-
plex network in terms of the scaling property of the
volume, which can be extended from regular lattices
to complex networks.['718] Nevertheless, understand-
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ing the self-similar properties of complex networks re-
mains a challenge.

In order to unfold the universal scaling properties
of complex networks, we study the fractal dimension
of some real complex networks using the dimension
measurement algorithm based on the scaling property
of the volume in Refs. [17,18]. We find that there ex-
ists a universal scaling relation between the average
density (p(r)) and the box linear size r with the expo-
nent dy. Furthermore, we study the fractal dimension
dy in small-world networks and in the regular lattices.
We find that the dependence of the fractal dimension
dy on the average adding shortcuts Naqq = Np in the
NW small-world networks and the size N in the reg-
ular lattices.

Generally, we adopt the abstract space, which is
different from one-dimensional linear space and two-
dimensional flat space, to analyze the characteristics
of complex networks, such as the structure of com-
plex networks and the dynamics behavior of and on
complex networks. In order to analyze the dimension
property of complex networks, we define the distance
d;; between two vertices, say ¢ and j, is the shortest
path length from vertex i to vertex j. We set all the
nodes as the seeds in turn and a cluster of nodes cen-
trad at each seed within the box of the linear size r.
Then, the average density (p(r)), defined as the ratio
of the number of nodes in all the boxes with the size
r and the complex network size N, is calculated as a
function of  to obtain the following scaling:

(p(r) = krs, (1)

where dy is defined as the fractal dimension of com-
plex network and k is a geometric constant which de-
pends on the complex network. The most important
is that the definition of the fractal dimension reduces
the fluctuation of the heterogeneous property of con-
nectivity degree of vertices in complex networks, since
all the nodes as the seeds in turn during covering com-
plex network. The definition here is different from the
box-covering algorithm, where the fractal dimension
relation N(I) ~ [~ and N(I) is the minimum num-
ber of boxes needed to tile a given network. However,
to identify the minimum N(I) value for any give [ be-
longs to a family of NP-hard problems.¢!

Table 1. General characteristics of several real networks. For
each network we have indicated the type (undirected network
or directed network) of complex network, the number of nodes,
the average degree (k), the average path length [, the clus-
tering coefficient C' and the degree distribution P(k). Here
empty shows that there is no obvious degree distribution since
the size is too small. The various types of networks datasets
are obtained from the Pajek datasets (http://vlado.fmf.uni-
1j.si/pub/networks/data/).

Network Type Size (k) ! C P(k)
Power grid undirected 4941 2.67 18.7 0.08 e~ 0:5%
C.Elegans directed 306 7.66 3.97 0.147

Yeast directed 2361 2.82 4.62 0.04 k211
CNCG  undirected 7343 1.62 3.92 0.103 k=217
E-mail directed 1133 9.62 3.606 0.166 e~ 0-11k

We apply the definition of the fractal dimen-
sion above mentioned to some real complex net-
works, e.g., the chemical biology networks such as the
protein-protein interaction network (PIN) in budding
yeast,['9 the neural network of the nematode worm
C.elegans,[!] the social networks such as the email net-
work of University at Rovira i Virgili (URV)®! and
the collaboration network in computational geometry
(CNCG), the technological network such as the elec-
trical power grid of the western United States.[!] All
those real complex networks are of scientific interest.
The PIN in budding yeast plays a key role in predict-
ing the function of uncharacteristic proteins based on
the classification of known proteins within topological
structures. The C.elegans is an important example of
a completely mapped neural networks. The graph of
the email network at URV and the graph of CNCG are
the surrogates for social networks where the agents in-
teract with others by the means of collaboration and
information transition. The graph of the power grid
is related to the efficiency and robustness of power
networks.!*) Table 1 shows that those real complex net-
works are sparse ones with the small-world effect and
the heterogeneous property of connectivity degree of
vertices.
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Fig. 1. (color online) The fractal dimensions in some real
complex networks. (a) The U.S. power grid with dy =
2.286. (b) The PIN in budding yeast with dy = 2.349.
(c) The email network of URV with dy = 3.334. (d) The
neural network of C. elegans with dy = 2.16. (e) The
CNCG with dy = 1.842. The red solid lines represent the
power-law fit for those real complex networks.

Figure 1 displays the evolution of {p(r)) as a func-
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tion of r for various real complex networks. We find
that (p(r)) evolves as a scaling function of r with
the exponent d¢ in all those complex networks. In-
terestingly, the scaling function is independent of the
style of complex networks, which may show the uni-
versal scaling property in complex networks. How-
ever, the fractal dimensions dy values are different in
those real complex networks, such as the U.S. power
grid with dy = 2.286, The PIN in budding yeast
with df = 2.349, the email network of URV with
dy = 3.334, the neural network of C. elegans with
dy = 2.16 and the CNCG with dy = 1.842, see Fig. 1.
The fractal dimension dy maybe is related to the com-
plex network structure, such as the shortcuts and
the size N. Here, the dy value is different from the
dp value obtained from the box-covering algorithm?
and the dp,;; value from the ball-covering approach,[w]
because of the different physical quantities in those
fractal definition. The average density (p(r)) of the
vertices in the boxes with size r is an exact solution in
our present work, and the minimum number N () of
boxes needed to tile a give network is an approximate
solution in the box-covering algorithm. For example,
in the C.elegans, dy = 2.16 is smaller than dg = 3.5
and dpan = 3.7,[19 respectively.

Further light can be shed on the dependence of the
fractal dimension dy on the complex network struc-
ture, such as the shortcuts in small-world network
and the complex network size. In order to do this,
we study the dimensions of the small-world network
and the regular lattice with open boundary condition
using the finite-size effect method.
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Fig. 2. (color online) The evolution of the density (p(r))
as a function of the boxes linear size r in NW small-world
network with various shortcuts density p. The dot-dashed
lines are the fit lines related to various p, respectively.
The size of the network is N = 1000. Inset: the fractal
dimension as a function of p in NW small-world network.
The curves satisfy the function of dy = 1.25log(1 4 Np)
for p > 0, where N,qq = Np is the average number of
shortcuts in the NW small-world network.

Here the small-world network is built as the al-

gorithm of the Newman-Watts (NW) small-world
network.[?!l The NW small-world network is defined
on a lattice consisting of N nodes arranged in a ring.
Initially each node is connected to all of its neighbors
up to some fixed range m to make the network with
average coordination number z = 2m. Randomness is
then introduced by taking each node in turn and, with
probability p, adding an edge to a randomly chosen
node, so that there are again (Np) shortcuts average.
For convenience, we call m the first neighbor parame-
ter (FNP) and p the shortcuts density. Tuning m and
p, we can obtain a series of complex networks with
different structural properties. This model is equiva-
lent to the Watts-Strogatz model!] for small p, whilst
being better behaved when p becomes comparable to
1.[21]

In Fig.2, we represent the evolution of the av-
erage density (p(r)) as a function of the box size r
with the same FNP m = 1 and different shortcuts
density p. We find that the relation between (p(r))
and r satisfies the scaling function as Eq. (1) with the
fractal dimension d; better. Furthermore, we find
that dy = 0.998 ~ 1 for p = 0 and dyf > 1 for
p > 0. Here dy increases as the shortcut density p
increases. Namely, the larger the shortcuts density p
is, the larger the fractal dimension dy of NW small-
world network is. Hence, the dimension dy can reflect
the disorder degree of complex systems. On the other
hand, we study the evolution of (p(r)) as a function
of p using the finite-size effect, see the inset of Fig. 2.
We find that the fractal dimension df, which is inde-
pendent of the FNP m, increases as the size N and
the shortcut density p of NW small-world network in-
creases. We fit the evolution of d; as a function of
the shortcuts density p and the network size N for
p > 0 using the nonlinear fitting method, and find
that dy(N,p) satisfies the relation

d¢(N,p) = 1.25log(1 + Np), (2)

where N,qq = Np is the average number of shortcuts
in the NW small-world network.
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Fig. 3. (color online) The evolution of the density {p(r))
as a function of the boxes linear size r in the regular lattice
with the size N = 2500. The dash dot line is the fitness
line with the slope v = 1.649. Inset: the fractal dimension
as a function of the size N in regular network. The red
curve satisfies the function of dy = 2 — exp(—N°-183 /4).

What is more, we also study the dimension of the
regular lattice with open boundary condition using
the above mentioned method. In Fig.3, we repre-
sent the evolution of (p(r)) as a function of r with
the size N = 2500. We find that the relation between
{p(r)) and r satisfies the strictly scaling function as
Eq. (1) with the exponent dy = 1.649. Surprisingly,
the dimension calculated by the above mentioned is
not equal to the integer 2. We analyze the depen-
dence of dy on the size N of the regular lattice using
the finite-size effect, since the regular lattice with fi-
nite size is embedded in the flat space. We find that
the fractal dimension d; increases as the size N in-
creases, see the inset of Fig. 3. Interestingly, we also
fit the function of d¢(N) using the nonlinear fitting
method, and find that d;(IV) satisfies the relation

dy(N) =2 —exp(~N"'*/4), 3)

where 4 is the connectivity degree that most vertices
are in the regular lattice. From Eq. (3), we find that
df — 2 for N — oo. Combining dy ~ 1 for p =0 in
the NW small-world network and dy — 2 for N — oo
in the regular lattice, we find that the definition of the
fractal dimension here can be applied to the regular
lattices. Hence, the finite size plays a crucial role in
the complex network structure and the dynamics of
and on complex networks.[22:23]

In summary, we have studied the fractal dimen-
sions of complex networks using the method intro-
duced by Shanker. We find that the evolution of
the average density (p(r)) as a scaling function of the
boxes linear size r in some real complex networks. The
scaling property is independent of the style of com-
plex networks and universal, since the calculation of

the (p(r)) is averaged over all the vertices in complex
networks in the definition of the fractal dimension.
The average density reduces the fluctuation in com-
plex networks. Furthermore, we study the dependence
of dy on the shortcuts (including the size N and the
shortcuts density p) in small-world networks and the
size N in the regular lattices. Our present work shows
the important role of complex network structure in
the fractal dimension d; and provides a new perspec-
tive to understand the fractal dimension of complex
networks.
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