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As well known, many real complex systems are directed and weighted ones. For under-
standing the topology structure of the directed China Railway Network (CRN) further,
we analyze the degree properties of the directed CRN and propose a new method to
measure the weight of station (i.e., the utilized efficiency of station) in CRN accord-
ing to how CRN works really. Rigorous analysis of the existing CRN data shows that
the CRN is an assortative network with scale-free degree distribution in space L. On
the other hand, the cumulative distribution of station’s relative weight, the cumulative
distribution of the shortest path length between stations, and the relationship between
relative weight and in-(out-)degree have been studied. Our present work provides a new
perspective to define the weight of transport complex network, which will be helpful for
studying the dynamics of CRN.

Keywords: Assortative complex network; exponential property; utilized efficiency; trans-
port system.
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1. Introduction

The last few years have witnessed an increasing interest in studying the statistical

and dynamical properties of transport systems in the physics community. Several

real-world transport networks, such as airport networks,1,2 railway networks,3–5

subway networks6–8 and bus-station networks,9–11 have been studied using various

concepts of statistical physics of complex networks. Most previous studies have

revealed that most transport networks appear to share well-known small-world

properties.12

Generally, there are two basic different topological representations during study-

ing the structural properties of transport system. One typical topological represen-

tation is space P , which is proposed by Sen et al.
3 The idea of space P indicates

that two stations are considered to be connected by a link when there is at least

one train, which stops at both the stations. In space P , the shortest path length
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between two arbitrary stations is the number of changing trains one has to take

to get from one station to another. Hence, the space P can be called the space

of changes.13 The other typical topological representation is space L,5,10 in which

two stations are connected by an edge if they are two consecutive stop stations on

a route. The shortest path length between two arbitrary stations is the minimal

number of stops one need to make in space L. Then, space L has another name

— space of stops.13 Note that the spaces L and P are abstract spaces that are

different from the Euclidean space.14 In this paper, we pay most of our attention

to the structure properties of China Railway Network (CRN) in space L, since the

structure properties of CRN in space P had been studied in Ref. 4.

As well known, the formation of statistical and dynamical properties of CRN,

which plays a crucial role in people’s daily lives and in China economy, is influenced

by the policy, economy, and culture. However, many previous works did not consider

those factors in abstract spaces L and P , which lost some important information

of transport systems when analyzing their dynamical properties. Here, we propose

a new method to measure station weight, namely, the utilized efficiency of station,

according to how CRN really works. Then, the cumulative distribution of station’s

relative weight, the cumulative distribution of the shortest relative weight between

stations, and the relationships between relative weight and in-(out-)degree have

been studied and the exponential properties have been identified.

The main goal of this paper is to study the degree and weighted properties of the

directed CRN consisted of NS = 3467 stations and NT = 2535 trains in space L. we

demonstrate that, on the one hand, CRN is an assortative network with scale-free

degree distribution in space L. On the other hand, a few of stations, which play the

same role as hubs in Internet, have higher utilized efficiency. The paper is organized

as follows. Section 2 presents the results of degree distributions and degree–degree

correlation of CRN in spaces L. In Sec. 3, we show the results of the cumulative

distribution of station’s relative weight, the relative weight-degree correlation, and

the cumulative distribution of the shortest path length between stations in both

space L and P . Conclusions are given in Sec. 4.

2. Degree Distribution and Degree degree Correlation

We consider the directed CRN as a graph with NS nodes (stations) and E edges.

The connectivity is represented by the NS ×NS adjacency matrix A whose element

aij is equal to one when there is at least one train which consecutive stops at

stations i and j and zero otherwise in space L.

In the directed CRN, the degree of station has two components: the number of

outgoing trains kout
i =

∑NS

j=1 aij leaving from the station i (called the out-degree

of the station i) and the number of ingoing trains kin
i =

∑NS

j=1 aji leaving for the

station i (called the in-degree of the station i). The total degree is then defined

as ki = kout
i + kin

i . The most basic topological property of the directed CRN can

be obtained in terms of the in-(out-)degree cumulative distribution in the both
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Fig. 1. Plots for the cumulative distribution of in-(out-)degree in space L in log–log representa-
tion.

abstract spaces. Figure 1 shows the plots for typical cumulative distribution of in-

(out-)degree in space L. In Fig. 1 we can see that the cumulative distribution of

in-(out-)degree follows power laws P>(k) ∼ k−γ with the power exponent γ = 1.62

in space L. Such power-law degree distribution can be found in other transporta-

tion networks, take three bus-station networks of China11 and 22 public transport

networks in Poland,10 for example. Further, the points of in-degree distribution and

out-degree distribution overlap each other in Fig. 1, which will be explained below.

Interestingly, there exist some dots below the power-law line in Fig. 1, probably

caused by some fluctuations due to the finite size effect.

Further light can be shed on the correlation properties of the CRN. To do this,

the first choice is the degree–degree correlation and the in- and out-degree corre-

lation, which maybe can explain the overlap phenomenon of the in-(out-) degree

distribution.

As we know, the degree distribution is formally characterized by conditional

probability P (k′|k) that be defined as the probability that an edge from a node

of degree k points to a node of degree k′. However, the direct evaluation of the

condition probability gives extremely noisy results for most real networks because

of their finite size NS . In order to overcome this problem, we define the average

degree of the neighbors of nodes with degree k, denoted as knn(k).15 Such a quantity

can be expressed in terms of the conditional probability as

knn(k) =
∑

k′

k′P (k′|k) . (1)

where P (k′|k) is the conditional probability, being defined as the probability that

a link from a node of degree k points to a node with degree k′. knn(k) increases
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Fig. 2. Plots for the evolution of knn(k) as a function of k in space L.

as a function of degree if nodes correlated by degree (assortative networks), and it

decreases if they are anti-correlated (disassortative networks).16

In Fig. 2, we represent the evolution of both kin
nn and kout

nn as a function of the

in-degree kin and out-degree kout, respectively, in space L. We can see that both of

kin
nn and kout

nn increase as a function of in-degree kin and out-degree kout, respectively.

Hence, the directed CRN is an assortative scale-free network in space L. That is

to say, the stations tend to connect to their connectivity peers in assortative CRN,

since there exist numerous smaller stations connected between two major ones in

railway network. The assortative property of CRN in space L is different from that

of the CRN4 and the IRN3 in space P because of the part geographical factor in

space L.

We also analyze the in- and out-degree correlation following the method of

degree–degree correlation mentioned above. We study the average out-degree of a

node with in-degree kin, denoted as kout(kin), which can be defined as follows:

kout(kin) =
∑

kout

koutP (kout|kin) , (2)

where P (kout|kin) is the conditional probability that defined as the probability that

a node with in-degree kin has an out-degree kout.

In Fig. 3, we present the evolution of kout as a function of in-degree kin. We

find that there are most dots lie on the line kout(kin) = kin. Namely, most stations

have the same in-degree and out-degree, which can explain the overlap phenomenon

of the cumulative distributions of in-degree kin and out-degree kout in Fig. 1. Both

of the results reflect that the CRN is a balanced transportation system in space L,

since there is one train leaving for the station, and then there is another train leaving

from the same station in order to keep the traffic flow balance. The phenomenon

of traffic flow balance, which has been found in China airport network,1 is a basic

phenomenon in transportation systems. Interestingly, there are some dots below
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Fig. 3. The plots for the evolution of kout(kin) as a function of the in-degree kin. The slope
of the solid line in the picture is one, namely, there exists nodes that have the same number of
out-degree and in-degree while the dots on the line.

the line y = x in Fig. 3, namely, the number of outgoing trains leaving from one

station is not always equal to the number of ingoing trains leaving for the same

one, probably caused by the capacity of trains. We find that those stations with

larger in-degree kin and out-degree kout play the same role as hubs in Internet.

3. Weighted Properties of the Directed CRN

Another important feature of CRN, along with many other real-world networks,

is that each node (station) plays different role in the system. Some nodes have

more weight than others and therefore play a greater role in contributing to the

dynamics of the whole network. In fact, the trains running on CRN are divided

into through trains, red balls, rapidoes, and way trains in China. The condition

of stops of train is related to its kind, i.e., the through trains and red balls stop

at the important stations — which always have been built in the cities that are

the political, economic, and cultural centers of Provinces — and the way trains

stop at any one. Therefore, it is necessary to consider the station weight and its

distribution. According to how CRN works really, we define the weighted degree of

station i as follows:

wi =

NT
∑

j=1

1

nj(i)
, (3)

where NT = 2535 is the number of trains running through the CRN and nj(i) is

the number of stops of train j that stops at station i. wi represents the utilized

efficiency of stations, which is related to the number of and the kind of trains. The

larger is the weight wi of station i, the more important role the station i plays in

CRN.
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For the sake of convenience, we define the relative weight rwi of station i as

follows:

rwi =
1/wi

max{1/w1, 1/w2, 1/w3, . . . , 1/wNS
}

, (4)

where NS is the number of stations, and the denominator is equal to the maximum

value of the set {1/wj}(j = 1, 2, . . . , NS) in CRN. Hence, the relative weight rwi ∈

(0, 1], namely, we set the relative weight of the station with the lowest utilized

efficiency as one. The smaller is the relative weight rwi of station i, the more

important role the station i plays in CRN.

Generally, the role and utilized efficiency of a node is proportion to its node

degree in complex network. The nodes with higher node degree, which always have

higher utilized efficiency (i.e., lower relative weight rw), are called hubs. Proven the

conclusion, in Fig. 4 we represent the correlation between the in-degree kin and the

relative weight (rw) in both abstract space L and P . We find that there exist some

stations with smaller in-(out-)degrees have smaller relative weights rw, namely, the

higher utilized efficiency of those stations. Take 302 (the serial number of East

Guangzhou station) and 315 (the serial number of Longchuan station) stations, for

example, although they have almost the same in-(out-)degree (kin
302 = 16, kout

302 =

21, kin
315 = 17, kout

315 = 18), their relative weights are quite different in space L, i.e.,

rw302 = 4.08×10−4 and rw315 = 5.6×10−3. The same result is also found in space

P , see the left picture of Fig. 4. Hence, the role and utilized efficiency of the East

Guangzhou station is more important than that of the Longchuan station, since the

Guangzhou is the political, economic, and cultural center of Guangdong Province

and there are many through trains and red balls leaving for and from the station.

On the other hand, only from the in-(out-)degree of the two stations, we cannot

find any difference between them. What is more, we find that the stations with

Fig. 4. Left: The plots for the correlation between the related weight (rw) and the in-degree

(kin) in space L. Right: The plots for the correlation between the related weight (rw) and the
in-degree (kin) in space P . Each dot represents the station with (kin, rw) accordingly.



December 12, 2008 16:18 WSPC/141-IJMPC 01331

Degree and Weighted Properties of the Directed China Railway Network 1915

Fig. 5. Plots for the evolution of P>(rw) as a function of the relative weight rw in log-normal
representation. The slope of the fitted line is −2.89.

higher utilized efficiency always have been built in cities, which are the political,

economic, and cultural centers of local and global regions in China.

We consider the distribution of rwi firstly. In order to reduce the statistical errors

arising from the system finite size, we adopt the cumulative weight distribution. The

cumulative distribution form, P>(rw), which is relative to the original distribution

P (rw) through the following formula:

P>(rw) =

∫ rwmax

rw

P (rw′)drw′ (5)

where rwmax = 1 is the maximal relative weight available in CRN. In Fig. 5, we

represent the cumulative distribution P>(rw) as a function of the relative weight

rw. We find that the cumulative distribution of the relative weight for CRN ap-

proximately fits to an exponential decaying distribution P>(rw) ∼ exp(−βrw)

with β = 2.89, which is different from the distribution of degree in Fig. 1. Both

the quantities of relative weight that we defined and degree play different roles in

the structure and dynamics of CRN. Hence, we should consider the political, eco-

nomical, and cultural factor (i.e., the role of relative weight) during studying the

traveling dynamics of people by trains in abstract spaces L and P .

As well known, in abstract spaces L and P , we consider the structure topolog-

ical properties of transport systems from the viewpoint of advantage of people’s

traveling. We hope to arrive at our destination expediently. Therefore, we study

the shortest path length d, which describes the most advantage of a route between

stations quantificationally, in the weighted CRN. In order to do this, we should

define the relative weight of edge eij as follows:

eij = aij × (rwi + rwj) , (6)

where aij is the element of adjacency matrix A of CRN and rwi is the relative

weight of station i. Hence, the shortest path length dij is defined as the minimum
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summation of relative weights along the shortest route S from station i to station

j and can be defined as follows:

dij = min
∑

(u,v)∈S

euv (7)

where the route S is the set of edges {aik, akl, . . . , auv, . . . , awj}. The route S pro-

vides the more advantage than other routes when you traveling from station i to

station j. Therefore, it is necessary to study the property of the shortest path length

of weight CRN before researching the dynamics of CRN in abstract space L and

P . Here, we focus on the cumulative distribution P>(d) of the shortest path length

in weighted CRN. The cumulative distribution P>(d) is defined as follows:

P>(d) =

∫ dmax

d

P (x′)dx′ , (8)

where P (x′) is the probability that defined as the probability of the shortest path

length x′ between stations in weighted CRN, and dmax is the diameter of weighted

CRN.

In Fig. 6, we represent the evolution of the cumulative distribution of the short-

est path length P>(d) as a function of d in both spaces L and P . Interestingly,

Fig. 6(a) shows that the cumulative distribution of the shortest path length ap-

proximately fits to a two-regime exponential decaying distribution with different

exponents in space L. The turning value of the shortest path length dl
c ' 7 in space

L and the two-regime exponential decaying distribution can be well prescribed by

the following expression:

P>(d) ∼

{

exp(−0.402d) , if d < dl
c ,

exp(−0.568d) , if d > dl
c .

(9)

(a) (b)

Fig. 6. Plots for the cumulative distribution of the shortest path length as a function of the
shortest path length (a) in space L on log-normal representation and (b) in space P on normal
representation. The inset in (b) shows the evolution of the cumulative distribution in space P

when d > d
p
c ' 0.6, where d

p
c is the turning value of the shortest path length in space P .
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On the other hand, Fig. 6(b) shows the evolution of the cumulative distribution

P>(d) as the shortest path length d in space P . We find that the cumulative distri-

bution P>(d) follows a linear function of the shortest path length d with the slope

(−1.58) when d < dp
c ' 0.6, where dp

c ' 0.6 is the turning value of the shortest

path length in space P . When d > dp
c ' 0.6, the cumulative distribution P>(d) ap-

proximately fits to an exponential decaying distribution with the exponent (-3.22),

see the inset in Fig. 6(b). It is amazing to find that dl
c � dp

c , probably caused by

the geographic factor in space L. Furthermore, we also find that there are about

80% shortest path lengths that are lower than 0.5 in space P and about 50% lower

than 0.5 in space L.

4. Conclusions

In this paper, we analyzed the degree and weighted properties of the directed CRN

in abstract spaces. We find that the degree distribution is approximately given

by power-law function and the degree–degree correlation knn(k) increases as the

function of degree, which shows that the topological structure of CRN is an as-

sortative scale-free transport network. On the other hand, according to how CRN

works really, we proposed a new method to measure the utilized efficiency (i.e.,

the weight and relative weight) of stations, which reflects the role of the political,

economic, and cultural factors in the CRN working. The relation between in-degree

and relative weight of station, the cumulative distribution of relative weight, and

the shortest path length in weighted CRN have been studied, and exponential prop-

erties of the directed CRN have been identified. Our present work provides a new

viewpoint to measure the weight (the utilized efficiency) of station according to how

CRN works really and shows that it is necessary to consider the effects of weight

during studying dynamics of CRN in abstract spaces.

Acknowledgments

L. Guo thanks Prof. Li for valuable suggestions and comments. This work was

supported by the National Natural Science Foundation of China under Grant

Nos. 70571027 and 10635020 and by the Ministry of Education in China under

Grant No. 306022.

References

1. W. Li and X. Cai, Phys. Rev. E 69, 046106 (2004).
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It is shown that many real complex networks share the distinctive features, such as the small-world effect and the
heterogeneous property of connectivity of vertices, which are different from the random networks and the regular
lattice. Although these feathers capture the important characteristic of complex networks, their applicability
depends on the style of networks. To unravel the universal characteristic many complex networks have in common,
we study the fractal dimensions of complex networks using the method introduced by Shanker. We find that the
average ‘density’ 〈ρ(r)〉 of complex network follows a better power-law function as a function of distance r with
the exponent df , which is defined as the fractal dimension, in some real complex networks. Furthermore, we
study the relation between df and the shortcuts Nadd in small-world network and the size N in regular lattices.
Our present work provides a new perspective to understand the dependence of the fractal dimension df on the
complex network structure.
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Recently, complex networks have been studied ex-
tensively in interdisciplinary fields including mathe-
matic, statistical physics, computer science, sociology,
economics, biology, etc. Complex networks are ubiq-
uitous in the real world, e.g., there are technological
networks such as the power grid,[1] biological networks
such as the protein interaction networks,[2] and social
networks such as scientific collaboration networks,[3,4]

and human communication networks,[5] to name a few.
It has been shown that many real complex net-

works share distinctive characteristic properties that
differ in many ways from the random and regular
networks. One such property is the “small-world
effect”,[1] which means that the average shortest path
length between vertices in network is short, usually
scaling logarithmically with the size N of network,
while maintaining high clustering coefficient. A fa-
mous example is the so-called “six degrees of separa-
tion” in social networks.[6] Another is the scale-free
property that many networks possess. The proba-
bility distribution of the number of links per node,
P (k) (also known as the degree distribution) satisfies
a power-law P (k) ∼ k−γ with the degree exponent γ
in the range of 2 < γ < 3.[7] Although these proper-
ties capture the important characteristic of complex
networks, their applicability depends on the style of
networks. With the aim of providing a deeper under-
standing of the underlying mechanism of these com-
mon properties and unravelling the universal charac-
teristics that many complex networks possess, many
researchers have studied the self-similarity property
and the dimension of complex networks. Song et
al. discussed the mechanism that generates fractality,

i.e., the repulsion between hubs, using the concept of
renormalization.[8] In order to unfold the self-similar
properties of complex networks, Song et al. calculated
the fractal dimension using a ‘box-counting’ method
and a ‘cluster-growing’ method, and found that the
box-counting method is a powerful tool for further in-
vestigations of network properties.[9] The degree expo-
nent γ can be related to a more fundamental length-
scale invariant property, characterized by the box di-
mension dB and the renormalized index dk, as a func-
tion of γ = 1 + dB/dk.[9] Kim et al.[10,11] studied the
skeleton and fractal scaling in complex networks using
a new box-covering algorithm that is a modified ver-
sion of the original algorithm introduced by Song et
al. What is more, Kim et al. discussed the difference
of fractality and self-similarity in scale-free networks,
which has been helpful for us to understand the com-
plex networks better.[12] Zhou et al. proposed an al-
ternative algorithm, based on the edge-covering box
counting, to explore self-similarity of complex cellu-
lar networks.[13] Furthermore, Lee and Jung studied
the statistical self-similar properties of complex net-
works adopting the clustering coefficient as the prob-
ability measure and found that the probability dis-
tribution of the clustering coefficient is best charac-
terized by the multifractal.[14] On the other hand,
several algorithms have been proposed to calculate
the fractal dimension of complex network, such as
the box-covering algorithm[15] and the ball-covering
approach.[16] Shanker defined the dimension of com-
plex network in terms of the scaling property of the
volume, which can be extended from regular lattices
to complex networks.[17,18] Nevertheless, understand-
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ing the self-similar properties of complex networks re-
mains a challenge.

In order to unfold the universal scaling properties
of complex networks, we study the fractal dimension
of some real complex networks using the dimension
measurement algorithm based on the scaling property
of the volume in Refs. [17,18]. We find that there ex-
ists a universal scaling relation between the average
density 〈ρ(r)〉 and the box linear size r with the expo-
nent df . Furthermore, we study the fractal dimension
df in small-world networks and in the regular lattices.
We find that the dependence of the fractal dimension
df on the average adding shortcuts Nadd = Np in the
NW small-world networks and the size N in the reg-
ular lattices.

Generally, we adopt the abstract space, which is
different from one-dimensional linear space and two-
dimensional flat space, to analyze the characteristics
of complex networks, such as the structure of com-
plex networks and the dynamics behavior of and on
complex networks. In order to analyze the dimension
property of complex networks, we define the distance
dij between two vertices, say i and j, is the shortest
path length from vertex i to vertex j. We set all the
nodes as the seeds in turn and a cluster of nodes cen-
trad at each seed within the box of the linear size r.
Then, the average density 〈ρ(r)〉, defined as the ratio
of the number of nodes in all the boxes with the size
r and the complex network size N , is calculated as a
function of r to obtain the following scaling:

〈ρ(r)〉 ' krdf , (1)

where df is defined as the fractal dimension of com-
plex network and k is a geometric constant which de-
pends on the complex network. The most important
is that the definition of the fractal dimension reduces
the fluctuation of the heterogeneous property of con-
nectivity degree of vertices in complex networks, since
all the nodes as the seeds in turn during covering com-
plex network. The definition here is different from the
box-covering algorithm, where the fractal dimension
relation N(l) ∼ l−dB and N(l) is the minimum num-
ber of boxes needed to tile a given network. However,
to identify the minimum N(l) value for any give l be-
longs to a family of NP-hard problems.[16]

Table 1. General characteristics of several real networks. For
each network we have indicated the type (undirected network
or directed network) of complex network, the number of nodes,
the average degree 〈k〉, the average path length l, the clus-
tering coefficient C and the degree distribution P (k). Here
empty shows that there is no obvious degree distribution since
the size is too small. The various types of networks datasets
are obtained from the Pajek datasets (http://vlado.fmf.uni-
lj.si/pub/networks/data/).

Network Type Size 〈k〉 l C P (k)

Power grid undirected 4941 2.67 18.7 0.08 e−0.59k

C.Elegans directed 306 7.66 3.97 0.147
Yeast directed 2361 2.82 4.62 0.04 k−2.11

CNCG undirected 7343 1.62 3.92 0.103 k−2.17

E-mail directed 1133 9.62 3.606 0.166 e−0.11k

We apply the definition of the fractal dimen-
sion above mentioned to some real complex net-
works, e.g., the chemical biology networks such as the
protein-protein interaction network (PIN) in budding
yeast,[19] the neural network of the nematode worm
C.elegans,[1] the social networks such as the email net-
work of University at Rovira i Virgili (URV)[5] and
the collaboration network in computational geometry
(CNCG), the technological network such as the elec-
trical power grid of the western United States.[1] All
those real complex networks are of scientific interest.
The PIN in budding yeast plays a key role in predict-
ing the function of uncharacteristic proteins based on
the classification of known proteins within topological
structures. The C.elegans is an important example of
a completely mapped neural networks. The graph of
the email network at URV and the graph of CNCG are
the surrogates for social networks where the agents in-
teract with others by the means of collaboration and
information transition. The graph of the power grid
is related to the efficiency and robustness of power
networks.[1] Table 1 shows that those real complex net-
works are sparse ones with the small-world effect and
the heterogeneous property of connectivity degree of
vertices.

Fig. 1. (color online) The fractal dimensions in some real
complex networks. (a) The U.S. power grid with df =
2.286. (b) The PIN in budding yeast with df = 2.349.
(c) The email network of URV with df = 3.334. (d) The
neural network of C. elegans with df = 2.16. (e) The
CNCG with df = 1.842. The red solid lines represent the
power-law fit for those real complex networks.

Figure 1 displays the evolution of 〈ρ(r)〉 as a func-
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tion of r for various real complex networks. We find
that 〈ρ(r)〉 evolves as a scaling function of r with
the exponent df in all those complex networks. In-
terestingly, the scaling function is independent of the
style of complex networks, which may show the uni-
versal scaling property in complex networks. How-
ever, the fractal dimensions df values are different in
those real complex networks, such as the U.S. power
grid with df = 2.286, The PIN in budding yeast
with df = 2.349, the email network of URV with
df = 3.334, the neural network of C. elegans with
df = 2.16 and the CNCG with df = 1.842, see Fig. 1.
The fractal dimension df maybe is related to the com-
plex network structure, such as the shortcuts and
the size N . Here, the df value is different from the
dB value obtained from the box-covering algorithm[12]

and the dball value from the ball-covering approach,[16]

because of the different physical quantities in those
fractal definition. The average density 〈ρ(r)〉 of the
vertices in the boxes with size r is an exact solution in
our present work, and the minimum number N(l) of
boxes needed to tile a give network is an approximate
solution in the box-covering algorithm. For example,
in the C.elegans, df = 2.16 is smaller than dB = 3.5
and dball = 3.7,[16] respectively.

Further light can be shed on the dependence of the
fractal dimension df on the complex network struc-
ture, such as the shortcuts in small-world network
and the complex network size. In order to do this,
we study the dimensions of the small-world network
and the regular lattice with open boundary condition
using the finite-size effect method.
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Fig. 2. (color online) The evolution of the density 〈ρ(r)〉
as a function of the boxes linear size r in NW small-world
network with various shortcuts density p. The dot-dashed
lines are the fit lines related to various p, respectively.
The size of the network is N = 1000. Inset: the fractal
dimension as a function of p in NW small-world network.
The curves satisfy the function of df = 1.25 log(1 + Np)
for p > 0, where Nadd = Np is the average number of
shortcuts in the NW small-world network.

Here the small-world network is built as the al-

gorithm of the Newman-Watts (NW) small-world
network.[21] The NW small-world network is defined
on a lattice consisting of N nodes arranged in a ring.
Initially each node is connected to all of its neighbors
up to some fixed range m to make the network with
average coordination number z = 2m. Randomness is
then introduced by taking each node in turn and, with
probability p, adding an edge to a randomly chosen
node, so that there are again (Np) shortcuts average.
For convenience, we call m the first neighbor parame-
ter (FNP) and p the shortcuts density. Tuning m and
p, we can obtain a series of complex networks with
different structural properties. This model is equiva-
lent to the Watts-Strogatz model[1] for small p, whilst
being better behaved when p becomes comparable to
1.[21]

In Fig. 2, we represent the evolution of the av-
erage density 〈ρ(r)〉 as a function of the box size r
with the same FNP m = 1 and different shortcuts
density p. We find that the relation between 〈ρ(r)〉
and r satisfies the scaling function as Eq. (1) with the
fractal dimension df better. Furthermore, we find
that df = 0.998 ' 1 for p = 0 and df > 1 for
p > 0. Here df increases as the shortcut density p
increases. Namely, the larger the shortcuts density p
is, the larger the fractal dimension df of NW small-
world network is. Hence, the dimension df can reflect
the disorder degree of complex systems. On the other
hand, we study the evolution of 〈ρ(r)〉 as a function
of p using the finite-size effect, see the inset of Fig. 2.
We find that the fractal dimension df , which is inde-
pendent of the FNP m, increases as the size N and
the shortcut density p of NW small-world network in-
creases. We fit the evolution of df as a function of
the shortcuts density p and the network size N for
p > 0 using the nonlinear fitting method, and find
that df (N, p) satisfies the relation

df (N, p) = 1.25 log(1 + Np), (2)

where Nadd = Np is the average number of shortcuts
in the NW small-world network.
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Fig. 3. (color online) The evolution of the density 〈ρ(r)〉
as a function of the boxes linear size r in the regular lattice
with the size N = 2500. The dash dot line is the fitness
line with the slope γ = 1.649. Inset: the fractal dimension
as a function of the size N in regular network. The red
curve satisfies the function of df = 2 − exp(−N0.183/4).

What is more, we also study the dimension of the
regular lattice with open boundary condition using
the above mentioned method. In Fig. 3, we repre-
sent the evolution of 〈ρ(r)〉 as a function of r with
the size N = 2500. We find that the relation between
〈ρ(r)〉 and r satisfies the strictly scaling function as
Eq. (1) with the exponent df = 1.649. Surprisingly,
the dimension calculated by the above mentioned is
not equal to the integer 2. We analyze the depen-
dence of df on the size N of the regular lattice using
the finite-size effect, since the regular lattice with fi-
nite size is embedded in the flat space. We find that
the fractal dimension df increases as the size N in-
creases, see the inset of Fig. 3. Interestingly, we also
fit the function of df (N) using the nonlinear fitting
method, and find that df (N) satisfies the relation

df (N) = 2 − exp(−N0.183/4), (3)

where 4 is the connectivity degree that most vertices
are in the regular lattice. From Eq. (3), we find that
df → 2 for N → ∞. Combining df ' 1 for p = 0 in
the NW small-world network and df → 2 for N → ∞
in the regular lattice, we find that the definition of the
fractal dimension here can be applied to the regular
lattices. Hence, the finite size plays a crucial role in
the complex network structure and the dynamics of
and on complex networks.[22,23]

In summary, we have studied the fractal dimen-
sions of complex networks using the method intro-
duced by Shanker. We find that the evolution of
the average density 〈ρ(r)〉 as a scaling function of the
boxes linear size r in some real complex networks. The
scaling property is independent of the style of com-
plex networks and universal, since the calculation of

the 〈ρ(r)〉 is averaged over all the vertices in complex
networks in the definition of the fractal dimension.
The average density reduces the fluctuation in com-
plex networks. Furthermore, we study the dependence
of df on the shortcuts (including the size N and the
shortcuts density p) in small-world networks and the
size N in the regular lattices. Our present work shows
the important role of complex network structure in
the fractal dimension df and provides a new perspec-
tive to understand the fractal dimension of complex
networks.
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