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Cry or other insecticidal proteins, stacked genes or fusion proteins will 
increase in importance in the coming years4.

An advantage of insect-resistant transgenic plants is the reduced need 
for conventional insecticides, providing benefits for human health and 
the environment2,5. For example, in US cotton, the average number of 
insecticide applications used against the budworm-bollworm complex 
decreased from 4.6 in 1992–1995 to 0.8 in 1999–2001, largely owing to 
the introduction of Bt cotton6. In China, Bt cotton plants have provided 
a 60–80% decrease in the use of foliar insecticides5.

Detailed analysis of any potential effects of transgenic crops on the 
environment and human health is crucial before commercial release7–9. 
Key concerns are potential ecological consequences on nontarget organ-
isms, including natural enemies of pests, which provide an economically 
important service in pest suppression. Most regulatory systems have 
adopted a comparative risk assessment approach in which the transgenic 
crop is compared with the corresponding nontransgenic crop8–10, taking 
into account nontransgenic agricultural practice, including conventional 
pest control in the case of Bt crops. This approach also considers similar 
constructs and traits and the variation among commercial varieties that 
have a history of safe use. The applicant is required to conduct a detailed 
analysis of the chemical composition as well as a detailed agronomic 
assessment under field conditions10–12. When this approach is used, any 
major changes due to plant transformation will be detected, and plants 
with such changes can be eliminated during variety selection that pre-
cedes the commercialization of any new variety (whether conventionally 
bred or transgenic)13. This selection process allows the risk assessment 
to focus on the intended change, the introduced trait13.

Ecological risk assessment for regulatory purposes is commonly orga-
nized in a step-wise (tiered) approach, where the assessment increases 
in complexity and realism based on the knowledge gained during pre-
vious tests14–16. In the case of nontarget risk assessment of insecticidal 
transgenic crops, early tier (laboratory) tests are conducted to determine 
whether an organism is susceptible to the toxin under worst case condi-
tions, that is, organisms are directly exposed to high doses of the toxin. 
These tests are relatively simple in design, easy to standardize, repeatable 
and the results are easy to interpret. The risk assessment can stop here 
if risks under these worst case conditions are considered negligible or 
acceptable. However, if risks have been identified or cannot be ruled 
out with some certainty, higher tier tests will follow that expose nontar-
get organisms to the toxin under more realistic conditions. Eventually, 
specific questions regarding the impact of a toxin on certain indica-
tor organisms or ecological functions such as biological control might 
have to be addressed in field studies. The major goals of this step-wise 
approach are to maximize the possibility that hazardous proteins are 
identified early, and to prevent excessive testing of substances that pose 
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Transgenic crops expressing Bacillus thuringiensis 
toxins and biological control
Jörg Romeis, Michael Meissle & Franz Bigler

The area devoted to growing transgenic plants expressing 
insecticidal Cry proteins derived from Bacillus thuringiensis 
(Bt) is increasing worldwide. A major concern with the adoption 
of Bt crops is their potential impact on nontarget organisms 
including biological control organisms. Regulatory frameworks 
should advocate a step-wise (tiered) approach to assess possible 
nontarget effects of Bt crops. Laboratory and glasshouse 
studies have revealed effects on natural enemies only when Bt-
susceptible, sublethally damaged herbivores were used as prey 
or host, with no indication of direct toxic effects. Field studies 
have confirmed that the abundance and activity of parasitoids 
and predators are similar in Bt and non-Bt crops. In contrast, 
applications of conventional insecticides have usually resulted 
in negative impacts on biological control organisms. Because 
Bt-transgenic varieties can lead to substantial reductions in 
insecticide use in some crops, they can contribute to integrated 
pest management systems with a strong biological control 
component.

Microbial insecticides containing δ-endotoxins (Cry proteins) from 
Bacillus thuringiensis (Bt) have been used as an alternative to conventional 
chemical insecticides for almost 60 years. They are regarded as environ-
mentally friendly and highly selective and only a few adverse effects of Bt 
products on nontarget species have been reported1. However, Bt prod-
ucts constituted <2% of the overall world insecticide market until the 
genes expressing Cry proteins were engineered into plants and commer-
cialized in 1996 (ref. 2). Now, this once minor insecticide has become a 
major control tactic, with Bt maize and Bt cotton grown on 22.4 million 
hectares worldwide in 2004, a 25% increase from the previous year3.

Cry1-expressing maize and cotton are protected from attack by lepi-
dopteran pests like corn borers (mainly Ostrinia nubilalis) in maize and 
the budworm-bollworm complex (Heliothis virescens, Helicoverpa spp., 
Pectinophora gossypiella) in cotton2. In 2003, Bt maize for control of 
Diabrotica spp. (corn rootworms) was commercialized, expressing the 
coleopteran-specific Cry3Bb toxin. Potato plants expressing Cry3Aa to 
control Leptinotarsa decemlineata (Colorado potato beetle) were on the 
market from 1996 but taken off in 2001 because of marketing issues, 
consumer concerns and the introduction of a novel insecticide that 
controls the beetle and aphids2. New transgenic plants expressing novel 
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negligible hazard, so that higher tier testing can concentrate on plants 
that potentially do pose risks. Despite the adoption of this approach by 
regulatory agencies and the absence of indicated hazards of the Cry tox-
ins on biological control agents, some regulatory agencies have required 
additional field studies to obtain further evidence of safety17. The tiered 
approach has been challenged by some18,19 who propose long-term, 
complex ecological field assessments of transgenic plants before com-
mercial release in any case. The rationale for this alternative approach 
is the notion that there may be more subtle potential direct and indirect 
effects due to the expression of a Cry protein and the plants’ interaction 
with the environment.

Since their introduction ten years ago, several studies have addressed 
the potential effects of Bt crops on arthropod biological control agents 
(parasitoids and predators) in the laboratory or glasshouse as well as 
under semi-field and field conditions. In this article, we compile the data 
from these experiments and evaluate all published peer-reviewed stu-
dies. On the basis of the available information, we believe some general 
conclusions can be drawn that will improve future risk assessment of Bt 
plants and help direct the research agenda to ensure their safety.

Laboratory and glasshouse studies
Well-designed studies under confined conditions can be particularly 
suitable for understanding the cause of effects of insect-resistant trans-
genic plants on natural enemies. We ask four questions regarding expo-
sure and susceptibility of host/prey species and natural enemies to the 
expressed insecticidal proteins (Fig. 1). If these questions were addressed 

in multitrophic studies, effects on the higher 
trophic level could be predicted.

Direct effects of the toxin can be expected 
only if it is ingested and the parasitoid/preda-
tor is susceptible. This requires that the toxin 
is taken up through direct feeding on plants 
(e.g., pollen) or that it is passed on in a bio-
logically active form by the host/prey. Indirect, 
host/prey-quality mediated effects can be 
expected if susceptible herbivores ingest the 
toxin. Affected herbivores are often smaller, 
develop slower, behave differently and/or have 
an altered tissue composition compared to 
healthy individuals. Such changes may influ-
ence the quantity of prey and their nutritional 
quality for the next trophic level. Effects on 
natural enemies include lethal effects, sublethal 
effects (for example, prolonged development, 
reduced weight), altered behavior (for example, 
reduced parasitization rate, changes in prey 
choice) or no effects at all.

Results from studies that do not address the 
questions proposed in Figure 1 are difficult to 
interpret because the cause of observed effects 
remains unclear. We have therefore determined 
whether the published studies on nontarget 
effects of Bt plants have addressed these ques-
tions (Tables 1 and 2). Knowledge gaps are, 
whenever possible, supplemented with addi-
tional information.

Effects on predators
Eleven studies have investigated the effects of 
Bt plants on predators in a plant-herbi-
vore-predator (tritrophic) system (Table 

1). Deleterious effects on mortality, longevity or development of the 
predator have only been reported in studies using lepidopteran larvae 
as prey that ingested the toxin and were susceptible to it. Such effects 
are expected (Fig. 1). Even so, using susceptible prey does not always 
cause the expected effects on the predators20,21. To separate direct from 
indirect effects, it should  be determined whether the predator is ingest-
ing the Bt toxin when feeding on the prey and whether it is susceptible. 
One can predict with some accuracy if a predator is exposed to the toxin 
based on its mode of feeding. Predators with chewing mouthparts, such 
as lady beetles (Coccinellidae), are expected to ingest the toxin when 
preying on Bt-fed arthropods because they ingest the gut where most 
of the toxin is located. For predators with sucking mouthparts such as 
predatory bugs (Hemiptera), this is likely but less clear because they 
might selectively feed on body tissues that do not contain the toxin. 
Until now, toxin uptake by predators has only been measured directly 
by means of an immunological test (enzyme-linked immunosorbent 
assay (ELISA)) in two studies22,23.

Studies using purified Cry proteins (produced in recombinant 
microbes, e.g., Escherichia coli) can help to elucidate insect susceptibil-
ity to the toxin16 and can be used to assess the risk of Bt plants, pro-
vided studies are done to demonstrate the biological similarity of the 
microbial and plant-expressed proteins. Direct feeding studies have, 
for example, been conducted with larvae of Chrysoperla carnea (green 
lacewing). Feeding predator larvae with high concentrations of pure 
Cry1Ab and Cry1Ac toxin revealed no direct toxicity24,25, contradict-
ing earlier results (F.B. and colleagues26). Recent studies indicate that 
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Figure 1  Decision tree to determine nontarget effects of Bt plants on natural enemies (parasitoids and 
predators) feeding on either host/prey species or directly on plant material (e.g. pollen) in studies under 
confined conditions.
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Cry1A toxins do not show specific binding to brush border membrane 
vesicles from the midgut of C. carnea larvae25, which is a prerequisite 
for toxicity27. When C. carnea larvae are fed lepidopteran larvae reared 
on Cry1Ab-expressing maize, our studies28,29 indicate significantly 
prolonged larval development and increased mortality. However, from 
the binding studies noted above, it can be concluded that these effects 
were a consequence of sublethally intoxicated lepidopteran prey, appar-
ently being of lower nutritional quality. This is supported by our study 
results that showed C. carnea larvae are not affected when feeding on 
unsusceptible Tetranychus urticae (two-spotted spider mite; J.R. & F.B. 
and colleagues29) containing large amounts of biologically active Bt 
toxin (J.R. & F.B. and colleagues23). Chrysoperla carnea larvae in the 

field are known to mainly feed on aphids, whereas lepidopteran larvae 
are not considered an important prey. Because aphids are not harmed 
by Bt maize29,30, the risk that this crop poses for C. carnea larvae can be 
regarded as negligible16.

Whereas some tritrophic studies using sublethally affected prey have 
resulted in negative effects on the predator, this has not been observed 
for two species of predatory bugs20 (Nabis sp. and Zelus renardii) and the 
lady beetle Coleomegilla maculata21. When fed unsusceptible prey con-
taining Cry1Ab, F.B. and colleagues31 have shown the pirate bug Orius 
majusculus is also not affected. The results suggest that these predators are 
not susceptible to the amount of toxin encountered in the prey. Predators 
attacking sap-feeding herbivores, such as aphids and planthoppers,

Table 1  Studies under confined conditions examining effects of Bt plants on predators and parasitoids via tritrophic interactions

Crop Toxin Predator/parasitoid species Prey/host order

Does the prey/
host ingest the 
toxin?

Is the prey/host 
susceptible to 
the toxin?

Does the predator/
parasitoid ingest 
the toxin?

Reported 
effects Reference

Predators feeding on prey reared on Bt plants

Maize Cry1Ab Chrysoperla carnea (Neuroptera; Chrysopidae) Lepidoptera ✓ ✓ ✓a ↓ 28, 29

Acari ✓ 0 ✓a 0 29

Hemiptera 0 ?b,c 0 0 29

Hemiptera 0d ?b,c 0 0 30

Orius majusculus (Hemiptera; Anthocoridae) Thysanoptera ✓e ? ? 0 31

Poecilus cupreus (Coleoptera; Carabidae) Lepidoptera ✓ ✓ ✓ ↓ 22

Cotton Cry1Ac Orius tristicolor (Hemiptera; Anthocoridae) Lepidoptera ✓ ✓f ? ↓ 20

Geocoris punctipes (Hemiptera; Lygaeidae) Lepidoptera ✓ ✓f ? ↓ 20

Nabis sp. (Hemiptera; Nabidae) Lepidoptera ✓ ✓f ? 0 20

Zelus renardii (Hemiptera; Reduviidae) Lepidoptera ✓ ✓f ? 0 20

Potato Cry3Aa Hippodamia convergens (Coleoptera; Coccinellidae) Hemiptera ? ? ? 0 84

Coleomegilla maculata (Coleoptera; Coccinellidae) Coleoptera ✓ ✓ ✓g 0 21

Coccinella septempunctata (Coleoptera; Coccinellidae) Hemiptera ? ?c ? 0 85

Propylea quatuordecimpunctata (Coleoptera; 
Coccinellidae)

Hemiptera ? ?c ? 0 86

Rice Cry1Ab Cyrtorhinus lividipennis (Hemiptera; Miridae) Hemiptera 0h ?b,c ? 0 36

Parasitoids developing in hosts reared on Bt plants

Maize Cry1Ab Cotesia marginiventris (Hymenoptera; Braconidae) Lepidoptera ✓ ✓ ✓ ↓ 46

Cotesia flavipes (Hymenoptera; Braconidae) Lepidoptera ✓ ✓ ? ↓ 87

Campoletis sonorensis (Hymenoptera; Ichneumonidae) Lepidoptera ✓ ✓ ✓ ↓ 45

Cry9C Parallorhogas pyralophagus (Hymenoptera; Braconidae) Lepidoptera ✓ ✓i ? ↓ 88

Cotton Cry1Ac Cotesia marginiventris (Hymenoptera; Braconidae) Lepidoptera ✓ ✓ ? ↓ 89

Copidosoma floridanum (Hymenoptera; Encyrtidae) Lepidoptera ✓ ✓ ? ↓ 89

Cry1Aj Campoletis chlorideae (Hymenoptera; Ichneumonidae) Lepidoptera ✓ ✓ ? ↓ 90

Potato Cry3Aa Aphidius nigripes (Hymenoptera; Braconidae) Hemiptera ? ?k ? ↓ 48

Oilseed 
rape

Cry1Ac Diaeretiella rapae (Hymenoptera; Braconidae) Hemiptera 0l ?b,c 0l 0 91

Cotesia plutellae (Hymenoptera; Braconidae) Lepidoptera ✓ 0m ? 0n 43, 44

Lepidoptera ✓ ✓ ? ↓ 44

Information lacking in the original studies was extracted from other sources whenever possible (indicated by footnotes). ?, not determined; ✓, yes; 0, no/no effects; ↓, negative effects. aSee 
ref. 23. bNot relevant as prey only ingest traces of toxin. cPrey unaffected by the Bt plant. dSee refs. 29,32. eSee F.B and colleagues92 for another thrips species. fSee ref. 93. gExposure of the 
predator not verified, but assumed due to feeding manner (chewing mouthparts). hTrace amounts of Bt toxin detected in prey honeydew. iUnpublished data, see ref. 88. jPlants also express cow-
pea trypsin inhibitor (CpTI). kHosts affected by Bt potato (ref. 47); whether this was caused by the Bt toxin is unknown. lSee ref. 35. mUse of a Cry1Ac resistant host strain. nInconsistent effects 
on male weight.
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are unlikely to be exposed because the Cry proteins do not appear to 
be transported in the phloem32. To date, only trace amounts of the Cry 
proteins have been detected in sap-feeders on different Bt-transgenic 
events of maize29,32–34, oilseed rape35 and rice36. Thus, predators pre-
ferentially feeding on aphids, such as most lacewings and lady beetles, 
are unlikely to be at risk.

Arthropod predator species can be omnivorous as they may also feed 
selectively on certain plant tissues37. In eight studies, pollen, silk and 
leaf tissue from Bt plants was provided to predators (Table 2). For some 
of the predators studied, toxin uptake was either measured directly by 
ELISA (F.B. and colleagues34), its presence concluded from positive con-
trol treatments38 or addressed indirectly by confirming the uptake and 
digestion of the plant material39–41. Studies that did not confirm the 
ingestion of the Bt toxins do not allow one to draw conclusions about 
the sensitivity of the predator to the toxin. However, compared with 
control plant material, Bt transgenic plants had no adverse effects, as 
measured by different life-table parameters (e.g., longevity or fecundity), 
on any of the predator species studied. The laboratory studies therefore 
indicate that direct feeding on Bt plant material poses a negligible risk 
for these predators.

Effects on parasitoids
The effects of Bt plants on hymenopteran parasitoids developing in 
herbivores reared on transgenic plants have been investigated in ten 
studies (Table 1). As expected from the decision tree (Fig. 1), effects 
on mortality, development, weight or longevity were observed in all 
cases where Bt-susceptible lepidopteran herbivores were used as hosts. 
This is not surprising, given that host-parasitoid relationships are usu-
ally tight and parasitoids are very sensitive to changes in host quality42. 
Parasitoids developing in Bt-fed larvae of a resistant strain of Plutella 
xylostella (diamondback moth) were not affected43,44. This confirms 
that host quality was most likely the cause of effect in the other studies. 
To date, two studies suggest that toxin uptake by parasitoid larvae can 
differ among species because certain larvae may avoid the gut, where 
most of the toxin is concentrated45,46.

Ashouri et al.47 reported lower adult weight and behavioral changes 
(increased flight incidence) of Macrosiphum euphorbiae (potato aphid), 

when reared on Bt potato and consequently a higher mortality and 
reduced adult weight of the parasitoid Aphidius nigripes48. It is pos-
sible that unintended effects related to plant transformation caused 
the changes in aphid performance because secondary effects of gene 
expression are well known to occur in potato, whether transgenic or 
conventionally bred49. However, direct effects of the Bt toxin cannot be 
excluded, as toxin uptake by aphids on Bt potato and susceptibility of 
both hosts and parasitoids to Cry3Aa have not been investigated.

Semi-field studies
Semi-field studies confine the test organisms together with plants in 
cages under close-to-field conditions. This allows a more accurate esti-
mation of ecological risks because the organisms face more realistic lev-
els of toxin and routes of exposure than in laboratory studies. Compared 
with full-scale field investigations, semi-field studies have the advantage 
of being conducted with a larger number of replicates and under more 
controlled conditions. Semi-field studies may thus be a powerful tool to 
refine the risk assessment in cases where laboratory or glasshouse stu-
dies cannot rule out with sufficient certainty a potential risk for selected 
nontarget species50,51. In specific cases, they have even been suggested 
as alternatives to laboratory testing50.

Despite their usefulness, only three semi-field studies on the effects 
of Bt plants on natural enemies have been conducted. Field cage studies 
with Bt tobacco plants expressing low doses showed synergistic effects of 
the Bt toxin and a parasitoid resulting in increased mortality of Heliothis 
virescens (tobacco budworm) larvae52,53. On the other hand, studies with 
Bt sweet corn did not reveal conclusive results regarding the impact on 
predatory insects54.

Field studies
More than 50 field studies varying greatly in size, duration and sam-
pling effort have been conducted both in experimental and commer-
cial fields to evaluate the impact of Bt crops on natural enemies (Table 
3). Experimental field studies have only revealed minor, transient or 
inconsistent effects of Bt crops when compared with a non-Bt control 
(Table 3, columns 1 and 2). Exceptions were observed with specialist 
natural enemies, which were virtually absent in Bt fields due to the lack 

Table 2  Studies under confined conditions examining effects of Bt plants on predators via direct feeding on plant material
Crop Toxin Predator species Plant food provided Does the predator ingest the toxin? Reported effects Reference

Maize Cry1Ab Chrysoperla carnea (Neuroptera; Chrysopidae) Pollena ?b 0 94

Orius insidiosus (Hemiptera; Anthocoridae) Pollen ✓c 0 94

Silka ? 0 95

Orius majusculus (Hemiptera; Anthocoridae) Leaf and pollena ✓c 0 96

Coleomegilla maculata (Coleoptera; Coccinellidae) Pollena ✓d 0 94

Pollen ✓ 0 39

Cry3Bb Coleomegilla maculata (Coleoptera; Coccinellidae) Pollena ✓ 0 40

Pollena ✓ 0 38

Potato Cry3Aa Geocoris punctipes (Hemiptera; Lygaeidae) Leaf ?e 0 97

Geocoris pallens (Hemiptera; Lygaeidae) Leaf ?e 0 97

Orius tristicolor (Hemiptera; Anthocoridae) Leaf ?e 0 97

Nabis sp. (Hemiptera; Nabidae) Leaf ?e 0 97

Lygus hesperus (Hemiptera; Miridae) Leaf ?e 0 97

Rice Cry1Ab Propylea japonica (Coleoptera; Coccinellidae) Anthers and pollena ✓ 0f 41

Information lacking in the original studies was extracted from other sources whenever possible (indicated by footnotes). ?, not determined; ✓, yes; 0, no effects. aPlant food supplemented with 
prey to improve predator survival. bToxin in pollen confirmed, level of exposure unclear due to feeding manner of C. carnea larvae and provision of additional food, but probably low. cSee ref. 34 
for O. majusculus. dSee ref. 39. eSome feeding likely, but ELISA tests failed to confirm exposure. fInconsistent effects on female longevity.
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Table 3  Field studies examining abundance of natural enemies and biocontrol function in Bt crops compared to non-Bt controls
Crop Toxin Bt plants versus control plantsa             Insecticide-treated plants versus control plantsa

Natural enemy abundance Biocontrol function Natural enemy abundance Biocontrol function

Experimental field studies

Maize Cry1Ab No consistent effects ND ND ND 95b

No consistent effects ↓c ND ND 62

No consistent effects ND Pyrethroid↓; microbial insecticide
(Bt formulation), no consistent effects

ND 75

↓d ND ND ND 58

No consistent effects ND ND ND 98, 99

No consistent effects ND ND ND 100

No consistent effects ND ND ND 101

No consistent effects ND Pyrethroid, no consistent effects ND 102

No consistent effects ND ND ND 103

ND ↓c ND ND 64

No consistent effects ND Pyrethroid↓ ND 104

No consistent effects No consistent effects Pyrethroid↓; oxadiazine↓;
macrolide↓; microbial insecticide
(Bt formulation), no consistent effects

Pyrethroid↓; oxadiazine↓;
macrolide, no consistent
effects

66

No consistent effects No consistent effects ND ND 105

No consistent effects ND ND ND 94

↓c ND ND ND 56

ND No consistent effects ND ND 106

No consistent effects ND Neonicotinoide, no consistent effects ND 76

No consistent effects ↓c ND ND 63

No consistent effects ND ND ND 107

No consistent effects ND Pyrethroid↓ ND 108

No consistent effects ND ND ND 54

Cry3Bb ND ND Pyrethroide no consistent effects,
neonicotinoide, no consistent effects

ND 109

of target pests as prey55 or hosts56 (Table 3, column 1, footnote c). Three 
studies in Bt crops revealed consistent reductions in the abundance of 
different generalist predators that were also associated with the reduced 
availability of lepidopteran prey57–59. However, in two of those stu-
dies58,59, declines were only reported for Nabis spp. (damsel bugs) and 
at very low population levels making a robust assessment of these dif-
ferences difficult (Table 3, column 1, footnote d).

Bt crops as a pest control measure are intended to replace or reduce 
applications of conventional insecticides commonly used in agricul-
ture. Thus, a comparison of Bt crops with insecticides is a reasonable 
baseline for comparative risk assessment7–9. Several experimental field 
studies have included conventional insecticides as a treatment (Table 
3). Direct comparison between Bt crops and insecticide treated non-Bt 
crops could not be performed because some of the studies have not 
statistically compared the two treatments. Bt crops and insecticides can 
therefore only be compared indirectly. Broad spectrum insecticides, such 
as pyrethroids and organophosphates, consistently reduced abundances 
of different groups of predators and hymenopteran parasitoids (Table 
3, down arrows in column 3). Side effects of more selective insecticides 
such as indoxacarb (an oxadiazine) or spinosad (a macrolide) largely 
depended on the spray frequency whereas systemic insecticides (e.g., 
imidacloprid, a neonicotinoid) or Bt formulations were found to have 
no or little effect on natural enemies. Although some of the field studies 
lacked statistical power, because of limited replication and high vari-
ability in the data, and are affected by limitations in the spatial scale, they 
indicate clearly that nontarget effects of Bt crops are substantially lower 
than that of broad-spectrum insecticides. This has been confirmed by 
recent large-scale studies conducted in commercially managed Bt and 
non-Bt cotton fields in the United States60,61 (Table 3).

Abundance and biodiversity data of natural enemies add to our 
understanding of agro-ecosystems, but most important for agriculture 
and the environment is the biological control function (predation and 
parasitization) that they provide. Surprisingly few studies have com-
pared the function of natural enemies in Bt and conventional crops 
(Table 3, columns 2 and 4). Parasitization rates of naturally occurring 
or sentinel larvae of sensitive (target) lepidopteran species in Bt crops 
have often been reported to be lower compared with control plots53,62–64 

(Table 3, column 2, footnote c). This reduction in parasitism is not 
surprising, given that host populations were significantly decreased by 
the Bt crop. Predation rates on sentinel lepidopteran eggs or larvae were 
measured in Bt sweet corn and in Bt cotton. They did not differ between 
Bt and untreated non-Bt fields65–67 but were significantly reduced by 
the application of broad-spectrum insecticides66 (Table 3, column 4). 
Studies in commercially managed cotton fields revealed much higher 
predation rates in Bt cotton than in non-Bt fields, where more insecti-
cides were applied61 (Table 3, up arrow in column 2).

A six-year field study in Bt cotton on the abundance of 22 arthro-
pod natural enemy taxa indicates that the exposure to the Bt toxin over 
multiple generations does not cause any chronic long-term effects57. A 
companion study during five years revealed no effects on the function 
of the natural enemy community toward pests targeted by the Bt crop as 
well as a nontarget herbivore, Bemisia tabaci (tobacco whitefly)65.

As yet, there is little evidence that secondary pest outbreaks in Bt crops 
have emerged as a problem requiring significant use of insecticides. 
This confirms that overall biological control function is not negatively 
affected by the use of Bt plants5,59,65. Observed decreases in aphid popu-
lations have even been linked to an increased biological control activity 
in Bt crops in the absence of insecticides68–70. The regional appearance 
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of mirids (Miridae) and stinkbugs (Pentatomidae) as pests in Bt cotton 
has not been attributed to a disturbance of the biological control func-
tion but to the fact that those pests had earlier been under control from 
broad spectrum insecticides applied against lepidopteran pests71,72. This 
is regarded as a risk of insecticidal transgenic crops by some authors19. 
However, this phenomenon is often observed when broad-spectrum 
pest control is replaced by a more specific and targeted method, whether 
chemical, biological or transgenic.

Conclusions and recommendations
Although the effects of Bt plants have been investigated for a limited 
number of predator and parasitoid species under confined conditions, 
two general trends are evident: first, there is no indication of direct 
effects of Bt plants on natural enemies, either in direct plant feeding 
assays or when natural enemies have been provided with unsuscep-
tible hosts/prey containing the Cry toxin; second, adverse effects on 

natural enemies have been observed only in studies with susceptible 
herbivores as hosts/prey. These effects are most likely due to reduced 
host/prey quality. One exception to this is the reported impact of Bt 
potatoes on an aphid parasitoid48, which was probably due to affected 
aphid hosts47.

The data available to date do not allow us to predict the safety of 
other insecticidal proteins that might be expressed in future crops. 
Compounds, such as lectins or protease inhibitors, have different modes 
of action compared with Cry proteins and are known to cause effects 
on biological control agents73. However, if the questions proposed in 
Figure 1 would be addressed in future studies, the cause of observed 
effects could be elucidated, thus reducing uncertainties in the risk assess-
ment of novel insecticidal transgenic plants. It is obvious that not all four 
questions have to be answered in every study. For example, if herbivores 
do not ingest the toxin, their sensitivity cannot be assessed but the expo-
sure of the natural enemy can be regarded as being zero.

Table 3 (continued)
Crop Toxin Bt plants versus control plantsa Insecticide-treated plants versus control plantsa

Natural enemy abundance Biocontrol function Natural enemy abundance Biocontrol function

No consistent effects ND No consistent effectsf ND 110

No consistent effects ND Pyrethroid↓; neonicotinoide,
no consistent effects

ND 70, 111

Cry1Ab+VIP3A ↓g ND Pyrethroid↑↓h ND 112

Cotton Cry1Ab No consistent effects ND ND ND 79

No consistent effects ND ND ND 113

Cry1Ac No consistent effects ND Pyrethroid, organophosphate↑↓i ND 114

No consistent effects ND ND ND 115

No consistent effects ND Organophosphate↓ ND 116

No consistent effects ND ND ND 117

ND No consistent effects ND Chlorinated hydrocarbons, no 
consistent effects

118

No consistent effects ND Pyrethroid, organophosphate↓ ND 119

↓ ND Pyrethroid, organophosphate↓ ND 57

ND No consistent effects ND ND 65

No consistent effects No consistent effects ND ND 67

↓d ND ↓j ND 59

No consistent effects ND Pyrethroid↓, organophosphate↓ ND 69

Cry1Ac/Cry2Ab No consistent effects ND Organophosphate↓ ND 116

Potato Cry3Aa No consistent effects ND Pyrethroid↓, organophosphated, no
consistent effects; microbial insecticide
(Bt formulation), no consistent effects

ND 120

No consistent effects ND Pyrethroid↓; pyrazole↓ ND 85

No consistent effects ND Pyrethroid↓; organophosphatee, no
consistent effects; microbial insecticide
(Bt formulation), no consistent effects

ND 68

↓c ND ND ND 55

No consistent effects ND ND ND 121

Tobacco Cry1Ac No consistent effects ND ND ND 122

Cry1Ab ND ↓c ND ND 53

ND No consistent effects ND ND 52

ND No consistent effects ND ND 123

Eggplant Cry3B No consistent effects ND ND ND 124

Studies in commercial fields 

Cotton Cry1Ac ↑ ↑ 61

↑↓ ND 60

In experimental field studies, untreated non-Bt (control) crops were compared with Bt crops and with different insecticides. Studies in commercial fields compared Bt crops and non-Bt crops both 
under commercial production conditions (that is, both receiving insecticides according to the conventional practice). aEffects are noted as: (↓) consistent negative effects on one or more taxa; (↑) 
consistent positive effects; ND, not determined. bData from Cry1Ab and Cry1Ac expressing plants pooled. cNatural enemy for which a consistent effect was observed is a specialist antagonist of 
the target pest. dDecrease in Nabis spp., but at very low population levels. eSystemic insecticides, seed treatment or in-furrow application. fDifferent transformation events and various soil insecti-
cides have been tested. gFewer immature stages of lacewings, probably due to a lower plant attractancy for ovipositing females. hSome families of parasitic hymenopterans increased after pesticide 
application. iIncreased ladybird and lacewing abundance due to increased aphid populations after insecticide application. jInsecticides used according to conventional practice.
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Laboratory studies have been criticized as being ecologically unre-
alistic and not able to predict large-scale, long-term effects18,19,74. 
However, the C. carnea example shows that well-designed laboratory 
studies can, with a high degree of certainty, exclude negative effects in the 
field. C. carnea larvae were found not to be sensitive to Cry1 toxins24,25. 
However, our studies28,29 have shown C. carnea is affected when fed with 
Bt maize–reared lepidopteran larvae but not when they have received 
Bt maize–reared aphids29,30, their predominant prey. Collectively, these 
studies indicated that Bt maize poses no or a negligible risk for C. car-
nea16, which has been confirmed by a number of field studies56,57,62,75,76. 
This example also shows that care must be taken when designing labora-
tory studies to ensure that the results are relevant for the field situation. 
Predators should not be forced to feed exclusively on prey species that 
they do not ordinarily attack in the field because this can lead to ecologi-
cally irrelevant results16.

The reduction of pests is the obvious goal of any crop protection 
method. Therefore, it is questionable if studies using herbivores that 
are targeted by the toxin in Bt crops are relevant to assess the risks for 
natural enemies. Surviving, sublethally affected herbivores are likely to 
be altered in nutritional quality and this will have potential consequences 
for higher trophic levels. Most predators are able to feed on a prey spec-
trum and they can switch to alternative prey when target pests are scarce. 
Specialist predators and parasitoids are likely to be most sensitive to 
changes in host/prey quality or quantity. Negative effects on natural 
enemies that depend on the target pests have been listed as one of the 
risks of insecticidal transgenic crops by some authors19. However, such 
effects on natural enemies, that are a consequence of an intended effect 
(that is, control of a pest), are common for all pest control methods, 
including insecticides, biological control and conventional host-plant 
resistance77,78 and are generally not regarded as a risk. Although region-
wide suppression of target pests could indeed cause a regional loss of 
a specific natural enemy, this is likely to be a rare event given that the 
natural enemy is usually able to survive on host/prey populations that 
thrive in the non-Bt refuge or on alternative host plants79,80.

For ecological risk assessment one needs to evaluate if statistically sig-
nificant findings from laboratory, semi-field and field studies are of eco-
logical relevance. Various risk assessment frameworks, including Annex 
III of the Cartagena Protocol on Biosafety81, refer to the importance 
of assessing risks of transgenic crops in the context of the risks posed 
by the conventional agricultural practice7–9. Insecticide treatments, the 
most dominant current pest control strategy, should be considered as 
one baseline for risk assessment. Alternative control methods (e.g., bio-
logical control by released natural enemies) or no pest control should 
be included in comparison only if they are of practical relevance. Field 
studies to date have revealed that predator and parasitoid abundance and 
biological control function are similar in Bt and untreated non-Bt crops, 
whereas broad-spectrum insecticides generally drastically reduce natural 
enemy populations as well as the biological control function.

There is an urgent need to establish guidelines and protocols for non-
target risk assessment of transgenic crops. This includes the determina-
tion of test endpoints (for example, mortality) with threshold-values 
to establish acceptable effect sizes below which the natural pest control 
function is not impaired. For example, in insecticide testing, mortali-
ties of up to 50% in standardized studies under confined conditions are 
considered to be acceptable82. For biological control agents, it has been 
suggested that they have to cause more than 40% mortality on a non-
target species in the field to lead to permanent, significant, population 
effects83. Although the methods and thresholds applied for risk evalua-
tion of insecticides and biological control agents should not be adopted 
for transgenic plants without a review, they give a first indication of the 
magnitude of accepted effects with other pest control methods. Recent 

data from Bt cotton suggest that an average decrease of about 20% in 
some predatory species do not seem to be ecologically meaningful in 
terms of the biological control function of the natural enemy com-
munity57,65.

However, even after the most thorough risk assessment, uncertainties 
will remain15. For this reason the European Union requires post-market 
monitoring of ecological effects caused by transgenic crops10,12. The 
published large-scale studies in commercial Bt cotton fields have not 
revealed any unexpected nontarget effects other than subtle shifts in 
the arthropod community caused by the effective control of the target 
pests60,61. These findings confirm the original conclusions drawn from 
the risk assessment that preceded the commercial release of Bt crops.

The data compiled in this study emphasize the importance of well-
designed, ecologically relevant studies conducted under confined con-
ditions and the use of a systematic tiered approach for nontarget risk 
assessment. They furthermore provide evidence that Bt crops grown 
today are more specific and have fewer side effects on parasitoids and 
predators than most insecticides currently used. For crops like cotton5 

and sweet corn66, it has been shown that insecticide applications can 
be reduced substantially by the adoption of Bt-transgenic varieties. In 
these and other systems, the Bt technology can contribute to natural 
enemy conservation and be a useful tool in integrated pest manage-
ment systems.
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