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Gene-for-gene plant disease resistance involves two basic
processes: perception of pathogen attack, followed by
responses to limit disease. Perception involves receptors with
high degrees of specificity for pathogen strains, which are
encoded by disease resistance genes. Large repertoires of
distantly related resistance (R) genes with diverse
recognitional specificities are found within a single plant
species. The generation of R-gene polymorphism involves gene
duplication, followed by DNA-sequence divergence by point
mutation, and by deletion and duplication of intragenic DNA
repeats encoding blocks of leucine-rich elements.
Recombination between related genes reassorts this variation
to further diversify gene sequences. Pathogen pressure selects
functional resistance specificities and results in the
maintenance of R-gene diversity. Recent genome-sequence
data reveal that the NBS-LRR (i.e. nucleotide-binding site-
leucine-rich repeat) class of R genes represents as much as
1% of the Arabidopsis genome. Experimental data have shown
that the LRR has a role in determination of specificity. Mutation
experiments, in which R-gene signaling has been dissociated
from specificity in constitutive signal mutants, have provided
the potential for non-specific resistance to be expressed from
pathogen-infection-induced promoters in transgenic plants. 

Addresses
CSIRO-Plant Industry, GPO Box 1600, Canberra, Australian Capital
Territory 2601, Australia
*e-mail: ellisj@pi.csiro.au

Current Opinion in Plant Biology 2000, 3:278–284

1369-5266/00/$ — see front matter
© 2000 Elsevier Science Ltd. All rights reserved.

Abbreviations
avr avirulence
CLV CLAVATA
Dm3 downy mildew 3
LRR leucine-rich repeat
NBS nucleotide-binding site
PK protein kinase
Prf Pseudomonas resistance and fenthion sensitivity
Pto Pseudomonas tomato resistance
R resistance
RPP5 resistance to Peronospora parasitica 5
RPS2 resistance to Pseudomonas syringae 2
TIR Toll/interleukin-1-receptor homology region
TMV tobacco mosaic virus

Introduction
Five classes of gene-for-gene disease resistance (R) genes
have been defined according to the structural characteristics
of their predicted protein products (see [1,2] for recent
reviews published in this series). Data from the genetic
analysis of plant–pathogen interactions and more recent, but
limited, data from molecular analysis support the model in
which the products of R genes act as receptors for the direct
or indirect products (i.e. ligands) of pathogen avirulence (avr)
genes. The receptor–ligand interactions are very specific

and mutations that modify or inactivate avr genes allow
pathogens to avoid recognition. Thus, two pertinent evolu-
tionary questions are what is the molecular basis of R-gene
specificity and how do new resistance specificities evolve? 

NBS-LRR genes
The majority of R genes cloned so far encode proteins with
a nucleotide-binding site (NBS) and a leucine-rich repeat
(LRR) region. Several NBS-LRR-containing R genes have
been cloned for the first time in the past year
[3•–5•,6,7•,8•]. Although extremely divergent in DNA
sequence, the gene products of the NBS-LRR class are
readily recognised by several distinctive motifs in their
amino-terminal half, which are conserved in amino-acid
sequence and order, and by carboxy-terminal LRRs [9•].
The NBS-LRR class of genes is abundant in plant species.
For example, in Arabidopsis, it is estimated that at least 200
different NBS-LRR genes exist comprising up to 1% of
the genome [9•]. Two major subclasses exist [1,9•]: one
with an amino-terminal Toll/interleukin-1-receptor homol-
ogy region (TIR) and another without the TIR region.
Some surprising observations have come from recent
genomic analysis. First, the TIR-NBS-LRR subclass has
not been recognised in the grasses in spite of the fact that
this subclass is predominant (i.e. comprises 75% of all
NBS-LRR genes) in Arabidopsis and is known in at least
one gymnosperm [9•]. Whether the absence of the TIR
class is a feature of all monocots or just grasses is unknown.
Second, in Arabidopsis, a number of genes that are predict-
ed to encode only the TIR region were detected [9•].
Further analysis will be needed to confirm the status of
these genes.

Two complete haplotypes (i.e. sets of genes in a complex
locus) of the RPP5 (resistance to Peronospora parasitica)
locus containing TIR-NBS-LRR genes in Arabidopsis have
recently been completely sequenced and analysed [10••].
Nine paralogues (i.e. adjacent related genes that have
arisen by duplication) are found in the Landsberg erecta
(Ler) haplotype and seven paralogues are found in the
Columbia ecotype (Col-0). Only one gene in Ler (the
RPP5 resistance specificity) and two in Col-0 are predicted
to encode a full-length TIR-NBS-LRR gene. The others
contain premature stop codons or retrotransposon inser-
tions. The two haplotypes are distinguished from the
genes flanking the locus by their high level of polymor-
phism. This polymorphism includes the position and
sequence of retrotransposon insertions in the two loci. 

The Mla locus (which encodes powdery mildew resis-
tance) in barley provides a further indication of the
sequence complexity of NBS-LRR loci [11]. Here, three
distinct families of NBS-LRR genes are found (with inter-
family amino-acid similarities of 46–51% and no overall
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significant DNA similarity) within a 240 kilobase interval
in which family members are interspersed. 

The extracellular LRR class
The extracellular LRR class of R genes includes the rice
Xa21 gene for resistance against bacterial blight
(Xanthomonas resistance) and the Cf genes of tomato for
resistance against the fungal pathogen Cladosporium ful-
vum. The Xa21 product has the classic receptor-kinase
format — an extracellular LRR, a membrane-spanning
region and an intracellular protein-kinase domain (see [1]
for references of the earlier literature). The Cf gene prod-
ucts contain extracellular LRRs and a transmembrane
domain, but lack a significant intracellular region that
could constitute a signalling component (e.g. a protein
kinase domain [1]). How the proposed Cf receptors trans-
duce signals across the cell membrane remains unknown.
The molecular analysis of the CLAVATA (CLV) system in
Arabidopsis, which is involved in the development of the
shoot meristem, has, however, recently provided clues to
the nature of this signal [12•]. 

Three components of the CLV system have been identi-
fied: first, CLV1, a transmembrane LRR receptor kinase,
which is analogous to Xa21; second, CLV2, an extracellular
LRR protein with a membrane-spanning anchor, which is
structurally analogous to Cf proteins; and third, CLV3, a
small extracellular protein that is the potential ligand that
interacts with and cements an activated signalling complex
involving CLV1 and CLV2. Whereas the Cladosporium-
encoded small avirulence proteins (e.g. Avr9) may be
analogous to CLV3, the predicted transmembrane receptor-
kinase component of the tomato Cf system remains to be
identified. Additional support for this model is provided by
the observation that one member of the Xa21-complex
locus in rice, Xa21D [13], encodes a truncated homologue
of Xa21 that is structurally analogous to Cf proteins, having
only LRR and transmembrane domains. Xa21D confers
partial resistance to bacterial blight in transgenic rice. The
extracellular LRR class of disease resistance genes may
well have evolved by recruitment of genes that were ini-
tially responsible for developmental processes in
multicellular organisms. It is interesting that the Toll sig-
nalling pathway in flies and mammals also has a dual role in
development and pathogen resistance [14].

The Pseudomonas tomato resistance (Pto) gene
The Pto gene for bacterial speck resistance in tomato, which
encodes a serine/threonine protein kinase (PK) with no
LRR region, requires the presence of the linked NBS-LRR
gene Prf (Pseudomonas resistance and fenthion sensitivity) for
activity (see [1,2] for earlier original references). No other R
genes in the PK class have been identified to date. An
extensive mutational analysis has been reported recently
that confirms that Pto is the receptor for the corresponding
ligand encoded by the bacterial avr gene Avr–Pto, and that
the Prf gene does not act upstream of Pto in signalling the
resistance response [15••]. The molecular analysis of the

Pto–Prf system is among the most elegant and detailed stud-
ies of R-gene function. 

The molecular basis of R-gene specificity
The flax L gene, a member of the TIR-NBS-LRR subclass,
has provided an excellent system in which to analyse the
molecular basis of R-gene specificity. Eleven alleles of the
flax L gene, ten of which encode different flax rust resis-
tance specificities, have been sequenced [16••]. The
comparison of the allele sequences revealed that most alle-
les contain polymorphic bases spread across the whole
coding region, with the largest variation in the LRR-coding
region. Comparison of the predicted amino-acid sequences
encoded by the most closely related pairs of alleles provides
information concerning regions of the polypeptide that are
important for the differences in gene-for-gene specificity.
For example, the L6 and L11 proteins, which are identical
in the TIR and NBS regions, differ by 33 amino-acid sub-
stitutions in the LRR. This indicates that the differences
between L6 and L11 resistance specificities are caused by
differences in their LRR regions. In vitro exchanges
between alleles and analysis of transgenic plants into which
the resulting hybrid L genes have been introduced also
indicate the importance of LRR variation in specificity dif-
ferences. Nevertheless, L6 and L7, which have different
specificities, differ only in the sequences encoding the
amino-terminal TIR region, which indicates that polymor-
phism in this region can also affect resistance specificity. 

Evolution of R genes and specificities
For an increasing number of R genes, including the
NBS-LRR genes, evidence of the selection for diversity of
codons encoding residues in the LRR region that are pre-
dicted to be solvent exposed, and hence may constitute
ligand contact points, has been observed [6,10••,13,17–20].
Like the initial analysis of Cf genes in tomato [17], subse-
quent comparison of DNA sequences within NBS-LRR
gene loci has revealed evidence of past exchanges of blocks
of sequence by recombination [6,10••,16••]. Whether such
exchanges occur by sequential crossing over or gene conver-
sion has not been determined. DNA-sequence analysis also
provides evidence for recombinational events that increase
and decrease the size of the LRR region. 

Modification of the length of the LRR appears to be an
important contributor to R-gene diversification. For exam-
ple, whereas the genes at the Cf4/9 locus of tomato vary
principally because of multiple nucleotide substitutions,
the related genes at the unlinked Cf2/5 locus have addi-
tionally undergone deletion/expansion events involving
individual LRR-repeat units [21]. Furthermore, these
events have been restricted to the amino-terminal LRR
region of the protein, a region of Cf proteins that deter-
mines specificity differences between paralogues [22]. In
flax L alleles, the LRR repeats are more degenerate and
the DNA sequences encoding the repeats are probably not
sufficiently related for inter-repeat recombination.
Nevertheless, examples occur in which blocks of sequence
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encoding LRR units within flax and Arabidopsis NBS-LRR
R genes have undergone duplication [10••,16••]. These
direct repeats then are able to undergo unequal exchange
events that can give rise to cycles of repeat expansion and
reduction. For example, although most L alleles in flax
contain two direct repeats of 450 base pairs comprising six
individual LRR repeat units, functional alleles with either
one or four copies of the 450-base-pair repeat occur [16••].
Another example is provided by the RPP5 locus where
more complex arrangements of direct repeats consisting of
sets of four individual LRR units exist [10••]. Exchange
events giving rise to paralogues with 8, 13, 21 and 25 LRR
units have taken place during the evolution of the locus. 

Mutant R genes resulting from expansion and contraction
of LRR-region repeats have been recovered from genetic
experiments in both flax and Arabidopsis [23,24]. Thus,
whereas point mutation can alter specificity by varying the
identity of potential ligand contact points in the LRR,
recombination/gene conversion can play a dual role in reas-
sorting variation in alleles and paralogues, and also by
reduction and expansion of the number of LRR units. The
reduction/expansion events could change the spatial distri-
bution of ligand contact points and adjust either affinity or
specificity for different ligands.

The role of unequal exchange events at complex
R loci
Re-assortment of sequence polymorphism by meiotic
recombination is a principal factor in R-gene evolution.
Where R genes exist as complexes of directly repeated genes
that are related in sequence, two alternatives for sequence
exchange are possible. First, ‘equal exchange’ in which the
first gene in the complex may only recombine with the first
gene in the homologous complex, the second gene with the
second homologue, and so on. Second, ‘unequal exchange’ in
which each gene in the sequence may recombine with any
other gene in the homologous complex. Sequential unequal
exchange between ribosomal RNA genes, for example,
either by crossing-over or gene conversion, results in rapid
homogenization of sequence differences so that paralogues
tend to be nearly identical. Because homogenization is not
observed for genes at the Dm3 (downy mildew 3) and Pto loci,
where individual genes in the complexes have more similar-
ity with orthologues in related species than with paralogues
[19,25], Michelmore and Meyers [25] argue that unequal
exchanges have been less important than equal exchanges in
the evolution of R genes. These arguments ignore the role of
selection. For ribosomal RNA genes, purifying selection acts
to maintain homogeneity in sequence. In contrast, R genes
are subjected to diversifying selection. 

Furthermore, the simple notion of tandem R genes, in
which the first gene in one haplotype is most related to
the first in a homologous haplotype, is not borne out by
the complete sequencing of the RPP5 haplotype from two
ecotypes of Arabidopsis [10••]. Haplotypes can contain dif-
ferent numbers of genes and, as observed for the RPP5

locus, the degree of sequence similarity between genes
from different haplotypes does not necessarily reflect
their position in the cluster [10••]. The probability of par-
alogues pairing during meiosis is likely to be proportional
to the level of sequence similarity between the interacting
gene sequences and is also likely to be influenced by
intergenic sequences. Recombination between highly
diverged sequences at complex loci is probably rare com-
pared to recombination between closely related genes. In
loci with highly diverged paralogues, such as Dm3, recom-
bination may therefore be limited to closely related
members, thus preserving sequence relationships
between orthologues in related species. Sequence
exchange between paralogues may, however, be more
common where greater sequence similarity exists. 

Importantly in plant populations, the frequency of chimeric
alleles resulting from equal versus unequal exchange is prob-
ably not determined solely by the frequency of the exchange
event but also by selection for novel resistance specificities
that arise from these processes. Thus, unequal recombina-
tion events, which give rise to chimeric genes ([4•]; Q Sun,
N Collins, T Pryor, S Hulbert, unpublished data), are
observed experimentally in homozygotes for the Rp1D rust
resistance locus in maize and inferred from sequence analy-
sis of the RPP8 locus in Arabidopsis [6]. Furthermore, the
patchwork of sequence variation shared between paralogues
of Cf genes [17], RPP5 [10••], RPP1 [20] and RPP8 [6] also
indicates that exchange occurs between paralogues. There is
also initial evidence for exchange of information between
distinct Cf loci (i.e. ‘ectopic exchange’ [26•]).

Molecular population genetics of R genes
Population genetic analysis of wild plant species can pro-
vide information concerning the frequencies and diversity
of resistance alleles in nature, and on the selection forces
maintaining resistance and leading to the evolution of new
specificities in natural populations. The high level of
genomic/molecular biological information that is accumu-
lating on Arabidopsis and Arabidopsis–pathogen interactions
is stimulating the increased use of this wild plant in popu-
lation analysis of host–pathogen interactions [27•,28•].

The data on Arabidopsis genes that are known to have a
function in resistance are beginning to indicate some differ-
ences in the nature of certain NBS-LRR resistance loci.
RPP1, RPP5 and RPP8 are found in complex loci with from
two to nine paralogues, and each locus contains two or more
identified resistance specificities (e.g. the virus resistance
gene HRT is a paralogue of RPP8 [29•]). The genes at each
locus are highly polymorphic, have been subjected to diver-
sifying selection and their sequences provide evidence for
recombination. These features are shared by the ‘classical’
resistance genes that have been identified in crop plants,
such as the Cf genes of tomato [17,21,22], the L and M rust-
resistance genes of flax [16••,23], the Rp1 rust-resistance
genes of maize [4•], the tobacco mosaic virus (TMV)-resis-
tance gene N (see [1] for original references), the potato
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virus X (PVX)-resistance locus Rx [3•], and the Dm3 downy
mildew resistance locus of lettuce [19].

In contrast, RPS2 (resistance to Pseudomonas syringae 2) [27•],
RPM1 (a gene conferring the ability to recognize
Pseudomonas pathogens carrying AvrRpm1 or AvrB) [28•] and
RPS4 [5•] are simple loci containing a single gene with only
minor allelic variation in DNA sequence. There are no indi-
cations or reports of these genes having undergone
diversifying selection, and they each have only a single iden-
tified resistance specificity. (RPS4 and its homologues are
somewhat unusual in that each gene is found in close prox-
imity to a second divergently transcribed NBS-LRR gene
with which it shares only 35% nucleotide identity [5•].) Some
of these features are similar to the tomato NBS-LRR gene
PRF (see [2] for references), the sequence of which is 
highly conserved within tomato.

Genes in the first (more complex) class have been identi-
fied using an oomycete pathogen species, Peronsospora
parasitica, which occurs in natural field infections of
Arabidopsis. Genes in the second (less complex) group
have been identified in the laboratory using bacterial
pathogens isolated from non-Arabidopsis hosts, and repre-
sent Arabidopsis–pathogen interactions that, to our
knowledge, have not been described in the field. Whether
these distinctions will be maintained after more in-depth
investigation remains to be seen. Nevertheless, two inter-
esting questions remain unanswered. First, do the
apparently contrasting characteristics of the two classes of
Arabidopsis genes reflect the different nature of the
pathogens, that is, oomycetes versus bacteria? Second, and
more interestingly, do the different characteristics of the
two groups result from the fact that the first class is subject
to co-evolutionary pressures from a field pathogen and the
second class is not? An open mind needs to be maintained
on whether some of the second class of genes are primari-
ly involved in an as yet unidentified function other than
classical gene-for-gene or race-specific disease resistance.
Perhaps these genes are involved in non-host resistance,
that is, resistance to pathogen species that are adapted to
another host species. In the absence of co-evolution of host
and pathogen, diversifying selection would not affect the
second class. These considerations may be important in
the choice of pathosystems for study and the interpretation
of results from population-genetic analyses in Arabidopsis.

A popular metaphor in the plant R-gene evolutionary/pop-
ulation biology literature sees the co-evolution of R genes
and pathogen avirulence as an ‘arms race’. This metaphor
has provided a useful conceptual framework for the con-
sideration of the evolution of multiple disease resistance
specificities. In this scenario, the effectiveness of an
R-gene specificity in the host is lost (defeated) as a result
of mutation of the corresponding pathogen Avr gene so that
the pathogen avoids recognition. This, in turn, imposes
selection pressure on the host for new resistance specifici-
ties, which may arise at the ‘defeated’ locus or elsewhere in

the genome, and the cycle continues. There is accumulat-
ing evidence (see [30]) that Avr genes have a positive
function in virulence and hence confer a selective advan-
tage to pathogens in the absence of a corresponding
R gene. Thus, a newly ‘defeated’ (but still functional)
R gene and its cognate Avr gene may be maintained in the
host and pathogen for long periods by balancing selection,
and fluctuate in frequency. Furthermore, selection in the
pathogen for novel Avr genes is also predicted by this
model. These predictions are in agreement with the obser-
vations of high levels of polymorphism for resistance and
avirulence in natural host/pathogen populations [31,32].

One recent evolutionary study provides a detailed examina-
tion of the RPM1 locus (P. syringae resistance in the
laboratory) of Arabidopsis [28•]. Using a collection of 26 eco-
types of diverse provenance, the authors confirm an earlier
observation, which was based on fewer ecotypes, that the
resistance is associated with a single NBS-LRR gene where-
as susceptibility is always associated with a large deletion
covering RPM1. Both alleles are found widely in Arabidopsis
throughout its natural distribution. From a molecular evolu-
tionary analysis of DNA-sequence polymorphisms flanking
the locus, Stahl et al. [28•] establish that the two alleles are
ancient (106 years old) have been maintained by balancing
selection and have fluctuated in frequency. In the absence
of an identified field pathogen that interacts in a gene-for-
gene sense with RPM1, the nature of this selection for active
RPM1 is speculative. Interestingly, the maintenance of the
deletion allele suggests that under certain conditions, the
active allele imposes a genetic load on the host. What this
fitness cost may be is an interesting question. So is the ques-
tion of why the null allele is only represented by a deletion
and not by insertion or point mutations, which frequently
inactivate other NBS-LRR R genes in Arabidopsis [10••].
Stahl et al. [28•] also make a critical analysis of the ‘arms
race’ model, which they propose predicts that ‘variation for
disease resistance will be transient, and that host popula-
tions generally will be monomorphic at disease-resistance
loci’. The model is correctly rejected on the basis that, first,
resistance and susceptibility alleles have existed at RPM1
for 106 years, and second, plant populations in general show
considerable variation at R-gene loci. Rejection of the
model is, however, contingent on this over-restrictive inter-
pretation of the ‘arms race’ metaphor. 

Downstream resistance signalling components
Although not the topic of this review, one recent report is
relevant to R-gene evolution. The authors cloned the Bs2
gene (for Xanthomonas blight resistance) from pepper and
demonstrated that it functions in several Solanaceous
species but not in species outside of the Solanceae [7•].
One interpretation of this observation is that downstream
components of R-gene signalling pathways are co-adapted
within species to particular R-gene products; a phenom-
enon referred to as ‘restricted taxonomic functionality’
[7•]. This is somewhat surprising considering the ubiqui-
ty of NBS-LRR genes in all plant species and extensive
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variation of NBS-LRR family members within species.
From the practical standpoint, this observation suggests
that successful trans-species transfer of R genes by
genetic engineering may be limited to closely related
genera unless the downstream components of resistance
signalling are also transferred and are able to engage with
the more terminal signalling components in the new
species. Experiments already in progress will no doubt
provide further insights.

Conclusions and future directions
Significant progress has been made during the past year in
understanding the determinants of R-gene specificity and
how these specificities evolve. In particular, mutational
analysis of Pto in tomato and recombinational analysis of
L alleles in flax have identified features of the two distinct
classes of proteins encoded by these genes that are
involved in recognition and signalling processes. In addi-
tion, the large-scale sequence analysis of complex R-gene
haplotypes has shed light on the processes of diversifying
selection, sequence exchange, and expansion/contraction
of LRRs that underlie the evolution of new resistance
specificities. Important questions that remain include the
nature of the interaction between R-gene products (other
than Pto) and their cognate avirulence proteins. An intrigu-
ing and plausible model has emerged for Cf-9–Avr-9
interaction and requires testing. It will be interesting to
see whether other R–Avr interactions also involve a ternary
(or higher order) complex. We also look forward to the mol-
ecular analysis of population genetics of R genes from
multi-allelic series or complex loci in wild-plant–pathogen
ecosystems to shed further light on the nature of the selec-
tion processes acting on these loci.

Update
Since the submission of this review several new publica-
tions relevant to this topic have appeared. The cloning of
a further Peronospora resistance gene from Arabidopsis,
RPP13, has been reported [33]. Three specificities have
been identified at the locus, which appears to be a single
gene with highly variable multiple alleles that are subject
to diversifying selection in the LRR region. 

The first analysis demonstrating a biological role of alter-
native products, a feature shared by all TIR-NBS-LRR
resistance genes, has been carried out for the N gene of
tobacco (which provides resistance to TMV) [34]. In vitro-
constructed variants of N, which in transgenic plants
encode only the major of the two alternatively spliced
messages associated with wild-type gene transcripts,
retain the capacity to detect TMV and induce HR.
However, the R gene is ‘weakened’ in these variants in
which, unlike in the wild-type, TMV escapes the HR
lesion, systemically infects the host plant, then induces
HR at locations distant to the infection site. Interestingly,
the ratio between the two alternative mRNA products of
the wild-type gene inverts during the first seven hours
after the infection of NN plants and then returns to the

pre-infection state. The full implications of these obser-
vations to N gene and other TIR-NBS-LRR gene
functions are awaited.

The first report of a plant gene isolated in a yeast two-
hybrid screen using a TIR-NBS-LRR gene has appeared
[35]. The NBS domain (now named the NB-ARC domain
to highlight the shared similarities of this region with
human Apaf-1, plant R-proteins and nematode CED-4
proteins) of RPP5 interacts with a plant protein that is
similar to the bacterial proteins RelA/SpoT, which are
involved in signaling during the synthesis/degradation of
guanosine phosphates, (p)ppGpp. Such proteins were
hitherto unknown in eukaryotes.  A biological role for
these proteins in plant disease resistance is yet to be
demonstrated.
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