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Abstract

Background: Although high-throughput genotyping arrays have made whole-genome association studies (VWGAS) feasible, only
a small proportion of SNPs in the human genome are actually surveyed in such studies. In addition, various SNP arrays assay
different sets of SNPs, which leads to challenges in comparing results and merging data for meta-analyses. Genome-wide
imputation of untyped markers allows us to address these issues in a direct fashion.

Methods: 384 Caucasian American liver donors were genotyped using lllumina 650Y (Ilmné50Y) arrays, from which we also
derived genotypes from the llmn317K array. On these data, we compared two imputation methods: MACH and BEAGLE. We
imputed 2.5 million HapMap Release22 SNPs, and conducted GWAS on ~40,000 liver mRNA expression traits (eQTL analysis).
In addition, 200 Caucasian American and 200 African American subjects were genotyped using the Affymetrix 500 K array plus
a custom 164 K fill-in chip. We then imputed the HapMap SNPs and quantified the accuracy by randomly masking observed
SNPs.

Results: MACH and BEAGLE perform similarly with respect to imputation accuracy. The llmné50Y results in excellent
imputation performance, and it outperforms Affx500K or IlImn317K sets. For Caucasian Americans, 90% of the HapMap SNPs
were imputed at 98% accuracy. As expected, imputation of poorly tagged SNPs (untyped SNPs in weak LD with typed markers)
was not as successful. It was more challenging to impute genotypes in the African American population, given (1) shorter LD
blocks and (2) admixture with Caucasian populations in this population. To address issue (2), we pooled HapMap CEU and YRI
data as an imputation reference set, which greatly improved overall performance. The approximate 40,000 phenotypes scored
in these populations provide a path to determine empirically how the power to detect associations is affected by the imputation
procedures. That is, at a fixed false discovery rate, the number of cis-eQTL discoveries detected by various methods can be
interpreted as their relative statistical power in the GWAS. In this study, we find that imputation offer modest additional power
(by 4%) on top of either llmn3 17K or lImn650Y, much less than the power gain from lImn317K to llmné50Y (13%).

Conclusion: Current algorithms can accurately impute genotypes for untyped markers, which enables researchers to pool data
between studies conducted using different SNP sets. While genotyping itself results in a small error rate (e.g. 0.5%), imputing
genotypes is surprisingly accurate. We found that dense marker sets (e.g. IImn650Y) outperform sparser ones (e.g. IImn317K)
in terms of imputation yield and accuracy. We also noticed it was harder to impute genotypes for African American samples,
partially due to population admixture, although using a pooled reference boosts performance. Interestingly, GWAS carried out
using imputed genotypes only slightly increased power on top of assayed SNPs. The reason is likely due to adding more markers
via imputation only results in modest gain in genetic coverage, but worsens the multiple testing penalties. Furthermore, cis-eQTL
mapping using dense SNP set derived from imputation achieves great resolution, and locate associate peak closer to causal
variants than conventional approach.
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Background

It has been estimated that the human genome contains
7.5 million common single nucleotide polymorphisms
(SNPs) with minor allele frequencies (MAF) > 5% [1], and
only a fraction of these (e.g. hundreds of thousands of
SNPs) can be directly assayed using current high-density
microarrays. Because of linkage disequilibrium (LD)
among nearby markers, many untyped SNPs are highly
correlated with one or more nearby assayed SNPs. There-
fore, testing assayed SNPs for association to traits of inter-
est will also have some power to capture signals for
untyped causal SNPs. Further, if the assayed SNPs are stra-
tegically distributed across the genome (e.g. tag SNPs),
maximal genetic coverage can be achieved [1-3]. Typical
genetic association studies examine assayed SNPs for asso-
ciation with phenotypes, where significant signals suggest
causal SNPs in the surveyed region. To enhance this type
of analysis, the genotypes of unobserved SNPs can be
imputed (i.e., predicted) based on nearby markers and
then directly tested for association with phenotypes of
interest [4-6]. This strategy has several advantages: (1)
allows researchers to directly combine experiments car-
ried out on different microarrays (e.g. Illumina and
Affymetrix arrays) for meta-analyses; (2) enables research-
ers to easily replicate/compare previous finding across
array types; and (3) enables testing on a large number of
SNPs to reveal the fine structure of the association peak,
facilitating interpretation of results and location of the
causal polymorphisms.

At present, the performance of genome-wide imputation
(GWI) of SNP genotypes has not been systematically
quantified in the context of a genome-wide association
study (GWAS), and GWTI's impact on statistical power in
the context of GWAS is not fully understood. In this paper,
we systematically benchmark the yield and accuracy of
GWI and the influence a number of factors, including gen-
otyping arrays, ethnicity, reference panel, and LD struc-
ture, on GWI performance. Further, we leverage large-
scale empirical data to investigate whether incorporating
GWI data in GWAS will result in additional statistical
power and will enhance ability to position the association
peak closer to causal variants.

Results

Several GWI methods have been developed [5-12], and
previous studies have well documented the accuracy of
these methods with respect to imputing missing geno-
types, as well as untyped SNPs. We find BEAGLE [11] and
MACH [7] algorithms are able to impute missing geno-
types with high accuracy. On our dataset, MACH slightly
outperformed BEAGLE in imputing missing genotypes
(Additional file 1). These results are consistent with inten-
sive comparison on existing imputation methods [11,13],
including MACH, BEAGLE, IMPUTE, fastPHASE and
PLINK. These methods perform quite similarly although
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MACH and IMPUTE are the best in term of accuracy. We
adopted the MACH algorithm for all subsequent analyses,
and mainly focus on imputing markers that are totally
untyped.

Imputation yield and accuracy

We employed the CATIE (Clinical Antipsychotic Trials of
Intervention Effectiveness) and an expanded version of
the deLiver study datasets [14,15], because these cohorts
have several appealing characteristics. First, both studies
contain Caucasian and African American subjects. Sec-
ond, both studies utilized advanced microarray products:
samples in CATIE were genotyped using the Affymetrix
500 K + 164 K custom array and deLiver samples were
genotyped using the Illumina HumanHap 650Y
(Ilmn650Y). From [Imn650Y, Illumina HumanHap 317
K (Ilmn317K) data can be derived (see materials and
methods). Finally, approximately 40,000 mRNA expres-
sion traits were measured on the deLiver cohort, provid-
ing a unique opportunity to assess statistical power
empirically for GWAS when incorporating WGI data.

We conducted GWI on 384 deLiver study Caucasian
American subjects (see materials and methods), where
untyped HapMap markers were imputed based on the
HapMap CEU reference [6,7,16]. For each untyped SNP in
the HapMap marker set, MACH output both predicted
genotypes and a quality score (QS). The majority of the
imputed SNPs had a high QS. For example, 88% of the
untyped SNPs had a QS > 0.8 (Figure 1, left panel, red
dashed line). When we conducted imputation only with
SNPs on the [Imn317K array, considerably lower quality
scores obtained, suggesting that GWI benefits from the
increased coverage achieved with the higher density arrays
(more assayed SNPs to begin with). The Ilmn317K array
is a tag SNP array developed to maximize genetic cover-
age. To construct the Ilmn650Y array, additional tag SNPs
were appended to the Ilmn317K set. By design, these
additional tag SNPs have weaker average correlations
(LD) with SNPs in the IImn317K set. Consequently,
imputations based on the Imn317K were not as accurate
(Figure 1, left panel, black dotted line).

To assess the accuracy of the imputed genotypes, we ran-
domly selected 1% SNPs from the Ilmn317K panel and
set all patients' genotypes on these 1% SNPs as "untyped"
(in other words, we masked out these 1% SNPs). After-
wards we imputed the corresponding genotypes for these
SNPs using the remaining SNPs in the IImn317K or
IImn650Y sets, respectively (Figure 1, middle panel). We
found the 1% random masking had minor impact on
imputation performance (Additional file 2). Comparing
the imputed and observed genotypes for the 1% masked
SNPs, we found the GWTI accuracy was very high. At a QS
= 0.8, imputations based on the Ilmn650Y genotypes
achieved an accuracy of 97.7%. Interestingly, even at the
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Genome-wide imputation based on the IImn650Y data from the 384 Caucasian Americans in the deLiver
cohort. We surveyed nine QS scores from 0.1 to 0.9 at 0.1 steps. At each QS score, we computed the faction of SNPs that
passed that score (yield) as well as the imputation accuracy using 1% of the SNPS that were randomly masked. In this case,
accuracy is defined as the fraction of imputed genotypes that matched the observed genotypes. For each parameter setting, we
conducted the random masking and imputation twice and obtained very similar results from the two realizations. Because the
accuracy estimation was derived from a large number of SNPs (N = 3K) and a large number of subjects (N = 384), the estima-
tion is very stable. The left panel shows that the imputation performance was better on the [Imn650Y data (red) than on the
lImn317K data (black), and that untyped SNPs in weak LD with the assayed SNPs were imputed less successfully (black dotted
line). The middle and right panels show that the imputation accuracy and yield were higher for the lImné50Y data compared to

the Ilmn317K data.

same QS threshold, imputations based on the Ilmn317K
genotypes were less accurate than those based on the
IImn650Y genotypes. Using the masked SNPs, we esti-
mated that 89% of the untyped HapMap SNPs could be
imputed with 98% accuracy with the Ilmn650Y array (Fig-
ure 1, right panel). Because the accuracy estimation is
based on a large number of comparisons (N = 384 sub-
jects x 3,000 SNP =~ 1E6), the estimation is very stable and
exhibits little variance.

Distribution of Imputation Quality Score (QS)

Distribution of Imputation Quality Score (QS)

In addition to the deLiver cohort, we ran GWI on 400
CATIE subjects. The HapMap CEU and YRI were used as
the reference sets for the Caucasian and African American
individuals, respectively. For the Caucasian Americans in
this cohort, imputations based on the Affx500K + custom
array genotypes gave performance better than lmn317K,
but worse than Ilmn650Y in the deLiver cohort (Figure 2,
left panel). Given the relatively weak inter-marker LD in
African Americans (compared to Caucasian Americans) as
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Figure 2

Genome-wide imputation based on the Affx 500 K plus 164 K custom array data of 200 Caucasian Americans
and 200 African Americans from the CATIE cohort. The left panel shows Caucasian outperformed the African Ameri-
cans. Also, pooled reference (HapMap YRI+CEU) greatly improved imputation comparing to using YRI reference alone. The
middle and right panels shows African American's imputation accuracy was also boosted by pooled reference, although still

trailing behind Caucasian counterparts.
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well as the potential population admixture (Additional
file 3), GWI on African American samples resulted in a
considerable reduction in accuracy (compared to results
achieved in the Caucasian American samples). The Eigen-
strat method [17] detected an admixture of European and
African genetic components in the African American sub-
jects (see materials and methods). Given this type of
admixture, it is natural to use a pooled reference (HapMap
CEU + YRI) for the GWI. We found the pooled reference
greatly boosted GWI performance in African Americans,
although still below the Caucasian American samples
(Figure 2, middle and right panels). This finding is con-
sistent with the report of Guan et al, who pointed out that
the GWI accuracy could be relatively robust as long as the
reference panel contained at least some individuals with
genetic variation representative of the study cohort [12].
Among the African Americans in the CATIE set, 75% of
the untyped SNPs in the HapMap set were imputed with
96% accuracy using the pooled reference. In contrast, all
HapMap SNPs can be imputed at this accuracy level in
Caucasian Americans.

The statistical power of imputation-based association
tests

Imputed genotypes may be useful in a variety of down-
stream analyses. One notable application is in testing for
association with phenotypes of interest. Perhaps the most
important question in this context is whether incorporat-
ing GWI genotypes enhances the statistical power to
detect associations compared to the power achieved using
only the assayed SNPs. Previous studies have used theoret-
ical arguments and simulation studies to address this
issue [5,18]. Conditioning on a number of assumptions,
GWI was found to increase power moderately over that
achieved by the Affx500K set. With the ~40,000 gene
expression traits scored in the deLiver cohort, we
attempted to quantify the power to detect expression
quantitative trait loci (eQTL) using GWI. The large
number of phenotypes scored in this cohort provides a
path to estimate the power empirically, reducing the
dependency on theoretical arguments and simulations
where underlying assumptions may not precisely hold.

For the power comparisons, we focused only on cis eQTLs
[19](i.e., associations in which the structural gene corre-
sponding to the expression trait and the associated SNP
are within 1 million base pairs), given the sample size was
too small to capture a significant proportion of the trans
eQTLs (i.e., structural gene corresponding to the expres-
sion trait and the associated SNP are more than 1 million
base pairs away or are located on different chromo-
somes)[15]. This strategy has been previously applied to
benchmark statistical power of SNP arrays in GWAS [3]. In
brief, at a fixed false discovery rate (FDR), the number of
cis eQTLs detected by a given method can be interpreted
as the relative statistical power in the GWAS for the
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method. The underlying rationale is straightforward. In
real data, although we could not determine whether a par-
ticular discovery was true or false, at a give FDR (e.g. 10%)
we know the proportion (e.g. 90%) of discoveries that are
true. Therefore, at a fixed FDR, when two methods result
in a different number of discoveries (termed as N; and N,)
there would be (1-FDR) *N, and (1-FDR)*N, true findings
and N, /N, is proportional to the relative power of the two
methods. Towards that end, single-marker Kruskal-Wallis
association tests were conducted to detect the cis eQTL for
each of the ~40,000 gene expression traits profiled in the
deLiver cohort. To empirically estimate the FDR we
repeated these tests on permuted gene expression data
sets. In each permutation run, we first randomized the
patient IDs in the expression file, breaking any association
between expression traits and genotypes while leaving the
respective correlation structures among gene expression
traits and SNP genotypes intact. Then we repeated the
association tests for every expression trait and genotype
pair in the permuted sets, leading to a set of null statistics
for each permutation. A standard FDR estimator was then
applied to the resulting association statistics, as previously
carried out on observed and permutation null statistics
[20].

We compared four different strategies in GWAS of gene
expression phenotypes: (1) directly testing for associa-
tions using the Ilmn317K SNPs, (2) testing for associa-
tions using the entire imputed HapMap SNP set based on
the Imn317K genotype data; (3) directly testing for asso-
ciations using the Ilmn650Y SNPs; and (4) testing for
associations using the entire imputed HapMap SNP set
based on IImn650Y genotype data. After the imputation
step we filtered out SNPs with a low QS (i.e., QS < QS
off)- We found that the statistical power of the GWAS on
the gene expression traits was insensitive to the QS s
where QS off € [0.1, 0.9] gave similar results (Additional
file 4). Figure 3 highlights the number of cis eQTLs (inter-
preted as relative power) at a QS = 0.3 according to
the suggestion of the Mach's authors. Interestingly, GWI
only modestly improved power (by 5.5% and 3.3% for
IImn317K and Ilmn650Y, respectively) comparing to the
analyses with assayed SNPs only. It should be noted that
the Imn317K + GWI offer less power than the Ilmn650Y
itself, suggesting higher density arrays cannot be totally
replaced by imputation.

Resolution of imputation-based association peaks

Because imputation improves the power to detect eQTL,
we explored whether the significance levels for cis eQTL p
values were significantly improved and whether such
improvements enhanced the resolution of the association
peaks. In the deLiver cohort genotyped on the Ilmn650Y
array, there is only a modest improvement in power
(3.3%) to detect cis eQTL. That is, almost all of the cis
eQTL identified in the GWI data set were detected when
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At fixed FDR, the number of cis eQTLs reflects the
relative power of different association study meth-
ods. We found imputation provided modest extra power on
top of IImn317K and limné650Y.

only assayed SNPs were looked at. However, we found
that 43.2% of the cis eQTL got smaller p-values when
incorporating imputation compared to the results using
assayed SNPs only. The significance levels for roughly
10% and 4% of the cis eQTLs improved by more than one
and two orders of magnitude, respectively. If in these cases
the GWI data were providing SNPs that were in stronger
LD with the causal variants, we would expect that for the
cis eQTL the most significantly associated SNPs would be
found closer to the structural gene. This in fact was exactly
what we found.

We classified cis eQTL detected by IImn650Y assayed
SNPs into two categories: (1) transcriptional start site
(TSS) eQTL in which the QTL peak was closer to the TSS
of the gene than to the transcriptional end site (TES); and
(2) TES eQTL in which the eQTL peak was closer to the
TES of the gene than to the TSS. For TSS eQTL the overall
median distance of the eQTL peak to the TSS moved from
-13.8 Kb to -9.9 Kb by incorporating imputation, where
the negative distance implies the eQTLs clustered just
upstream of the TSS. More striking were the TSS eQTLs
whose significance level gained at least one order of mag-
nitude. In this case the median distance to the TSS shifted
from -19.4 Kb to +1.6 Kb. For TSS QTLs whose signifi-
cance level gained at least two orders of magnitude, the
median distance to the TSS shifted from -19.8 Kb to +1.0
Kb. For TES eQTLs, the overall median distance of the
eQTL peak to the TES moved from +15.0 Kb to +7.3 Kb by
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incorporating imputation, where the positive sign implies
the eQTLs clustered just downstream of the TES. For TES
QTLs whose significance level gained at least one order of
magnitude, the median distance to the TES moved from
+17.8 Kb to -0.3 Kb. For TES QTLs whose significance
level gained at least two orders of magnitude, the median
distance to the TES moved from +25.9 Kb to -0.8 Kb. Fig-
ure 4 makes it clear that the location of the cis eQTL peaks
form a bimodal distribution around the TSS and TES sites,
with the middle regions of the genes having fewer cis
eQTL than the regions surrounding the TSS and TES sites.
From another viewpoint, we saw the strong association
hits resided close to the structural gene (Additional file 5).

Discussions

The genome-wide imputation of genotypes has recently
attracted significant attention given its broad applicability
in the era of GWAS. It is likely that many disease variants
have small effects, so that even today's large studies are
underpowered to detect most of these effects. Therefore,
combining data across multiple studies will be essential to
uncovering the genetic complexity of common human

Number of cis eQTLs
150 200 250
I I ]
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O RHE MmN

T
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Figure 4

To study the location of cis eQTL peaks, we divided
each gene into eight bins using the quarter-length of
that gene as the unit. For example, bin#| denotes the
region of a gene that is more than | unit upstream of the
transcription start site (TSS), and bin#2 denotes the region
of the gene that is immediately upstream of the TSS. Here we
restricted attention to the most highly significant cis eQTLs
(those with p < |E-10) and found the number of peaks (the
best hit SNP in the eQTL) in bin#| through bin#8 were 268,
49, 100, 57, 45, 86, 35, and 251, respectively. A bimodal dis-
tribution is apparent in this plot. We surveyed additional p-
value cutoffs in addition to |E-10, and observed consistent
results in which the middle part of the genes harbored less
cis eQTLs than the TSS and TES regions.
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diseases. Given this, one of the major utilities of genotype
imputation is in combining data from studies that use dif-
ferent genotyping chips to facilitate the meta analysis of
multiple GWAS [5]. We explored three critical issues
related to GWI: (1) accuracy of the imputed genotypes,
(2) the extent to which imputation increases the power to
detect associations, and (3) degree to which imputation
increases resolution of the association peak.

The first issue we explored is particularly relevant for com-
bining datasets. We systematically assessed a number of
factors that had the potential to influence the accuracy of
imputed genotypes. First, because accuracy depends on
SNP density, we observed that the Ilmn650Y was superior
to earlier versions of arrays. Further, we expect the new
Aftymetrix SNP 6.0 will offer good imputation perform-
ance similar to Ilmn650Y because their genetic coverages
are comparable. Hence, the price of the array could be the
most important factor in choosing a genotyping platform,
given sample size has a profound impact on statistical
power [3]. Second, the similarity of LD patterns between
the study sample and the reference has a significant
impact on accuracy given the untyped SNPs are imputed
based on haplotypes seen in the reference population (e.g.
HapMap samples). Our findings indicate the need to
extend the HapMap project to additional ethnic groups.
For example, extending HapMap data on Native Ameri-
cans would be useful for GWI in Hispanic American sub-
jects. Third, we found high accuracy could not be achieved
when the untyped SNPs were in weak LD with assayed
ones. For example, untyped IImn650Y SNPs were
imputed less successfully by Ilmn317K than randomly
selected HapMap SNPs. This finding is theoretically easy
to understand and nicely consistent with simulation stud-
ies, where Pei et al found all imputation methods per-
formed better in strong LD regions versus weak LD regions
[13]. In addition, we observed low GWI accuracy in Afri-
can Americans compared to Caucasian Americans, given
the genetic coverage of the SNP arrays were lower in Afri-
can populations. This is related to the dependency of LD
strength on imputation accuracy, given the relatively weak
LD for African subjects [21]. Zhao et al recently reported
the IMPUTE software achieved substantially higher accu-
racy in Caucasian and Asian subject compare to African
subjects, a difference explained by their LD differences
[21]. Arrays with even higher marker density are necessary
to capture more genetic information in genomes of Afri-
can subjects, and such arrays will boost GWI performance
in African American samples. Fourth, when studying GWI
accuracy by randomly masking out SNPs, we also binned
masked SNPs into minor allele frequency (MAF) catego-
ries (Additional file 6) and examined whether MAF
affected accuracy. At high QS scores (e.g. QS > 0.8), MAF
had little impact. At low QS scores, we saw significantly
more errors for high frequency SNPs. These results are
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consistent with those of Pei et al, where they found MAF
affected accuracy in low but not high LD regions [13].
Finally, population structure could affect GWI accuracy as
well as bias downstream association tests. We found
eigenstrat and the human genetics diversity project
(HGDP) were highly powered for detecting population
admixture, which have been shown in previous reports
[17,22-25]. More importantly, application of these tools
to our study samples revealed relationships to the 51 eth-
nic groups collected worldwide, guiding the appropriate
choice of GWI reference. For example, HGDP elucidated
the admixture of the Native American and Caucasian
genetic components in Hispanic American samples.
Therefore, including Native American data in the GWI ref-
erence panel would be critical to achieving high accuracy
when imputing Hispanic American subjects. One caveat
should be noted, while GWI can be successfully carried
out in the presence of population admixture, such admix-
ture could nevertheless lead to false-positive associations
unless proper adjustments are made.

The second issue we explored in the context of GWI was
statistical power, one of the most critical issues in genetic
studies involving complex traits. Whether GWI genotypes
provide extra power in a GWAS setting has been studied
via simulation [4,5,18]. However, such studies make a
number of modeling assumptions that may or may not be
true in practice. By leveraging the ~40,000 expression phe-
notypes measured in the liver gene expression cohort [15],
we were able to assess statistical power empirically. Incor-
porating GWI provided a 5.5% increase in power with
respect to the [lmn317K array. This increase in power is
likely due to the incomplete coverage by the Ilmn317K
array, so that GWI is able to extract moderately more
information from the genome. Similar results were
obtained for the Affx500K array [5]. In contrast, the power
gain by GWI is only 3.3% over that achieved by the
IImn650Y array, given the already high genetic coverage
by this array. Taken together, the power increase achieved
by imputing genotypes is not more dramatic because the
SNP arrays considered in this study are already quite
dense, in addition, imputation introduces more tests,
resulting in an increase in the multiple testing penalty.
Interestingly, the power of the Imn317K SNPs + Imputed
SNPs resulted in lower power than the lmn650Y SNPs to
detect cis eQTL in the deLiver cohort (Figure 3), indicating
the regions poorly covered by the Ilmn317K SNPs cannot
be recovered by imputation. That is, the latest high density
arrays cannot simply be replaced by GWI even for studies
on Caucasians. These observations are consistent with
previous reports that there was not a substantial gain in
power by genotyping all common SNPs compared to gen-
otyping only those SNPs represented on the IImn650Y
array [3]. The [Imn650Y (Affymetrix SNP 6.0 as well) are
tag SNP arrays trained on the HapMap data (270 individ-
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uals and about 2.5 million common SNPs). Hence, GWI
using HapMap data as a reference will not provide much
additional information. Given 7.5 million common SNPs
exist in the human genome [1], it is essential to generate a
reference SNP panel that goes beyond HapMap (e.g.,
incorporating novel SNPs and recruiting a greater diversity
of individuals) if we hope to significantly increase the
power gains that can be achieved by GWI in GWAS.

Finally, we found that GWI provided a denser association
map with superior resolution power, enhancing our abil-
ity to define the boundaries of the association peak and
infer the true causal variants. While the majority of cis
eQTLs could be identified using only assayed SNPs, we
found that imputation enhanced the p-values for 43.2%
of the cis eQTLs. More importantly, incorporating GWI
shifted the QTL peaks (i.e., the smallest p-value in the
QTL) closer to the structural genes. For example, the TSS
eQTLs, whose significance level gained at least one order
of magnitude by imputation, moved considerably closer
to the TSS (median distance shifted from -19.4 Kb to +1.6
Kb with imputation). The strongest eQTLs tend to cluster
near the genes' TSS and TES regions, forming a bimodal
distribution (Figure 4). These observations match our cur-
rent understanding that transcription initiation driven at
the TSS of the gene is among the most important determi-
nants of transcript levels, and supports a growing number
of observations from the ENCODE project and others that
many transcription factors bind near the TES of the gene.
In addition, miRNAs are known to affect transcript stabil-
ity and often bind transcript regions that are near the TES.
Given the above considerations, we believe the shift of
QTL peaks when incorporating GWI indicates the associa-
tion hits are more proximal to the causal variants.

Multiple testing is a critical issue for GWAS with or without
incorporating GWI genotypes. In the paper, we did not
focus on the SNP-trait association p-value, because it cer-
tainly requires rigorous correction. Instead, we derived FDR
empirically, which addressed the multiple testing and
allowed direct comparison of number of discoveries (i.e.,
relative statistical power) among various SNP panels. The
Bayes factor measures the impact of the data on the support
for H, in preference to H,. It has been used in an eQTL
study by Veyrieras et al [26]. The interpretation of a Bayes
factor obviates the need for an adjustment for multiple
comparisons. The frequentist and Bayesian approaches
have been compared on simulated data [12], where the two
strategies performed similarly at low FDRs (e.g. 10%).
However, it is difficult to compute the FDR using Bayes fac-
tors on real data where the truths are unknown. In contrast,
FDR is straightforward to derive using frequentist methods.
As discussed above, the FDR provides a path to empirically
assess statistical power, and so we chose the frequentist
approach for the analyses carried out herein.

http://www.biomedcentral.com/1471-2156/10/27

Clearly, GWI is very accurate when based on genotypes of
the today's high density arrays. Previously we proposed
methods to incorporate genotype uncertainty in associa-
tion test [27], and found that low genotype error rates
(e.g. 2%) had almost no impact on power or point estima-
tion of effect size. Therefore, conventional test methods
might be sufficient. The MACH algorithm outputs the QS
for each SNP, which provides a path to control the impu-
tation uncertainty. Shown in Additional file 4, we chose
different QS cutoffs to filter out less accurately imputed
SNPs and found the statistical power was not sensitive to
the filtering. In summary, we found the Ilmn650Y and
Affx500K + custom array could impute the entire HapMap
set accurately, at least among Caucasians. This is encour-
aging news for researchers regarding merging data created
on different platforms. Our results may also serve as a
guide with respect to choosing an array type for a given
study. Because sample size has a more profound impact
on GWAS statistical power compared to genetic coverage
of the SNP array [3], genotyping more subjects using
cheaper arrays will provide significantly more power to
detect associations between SNPs and traits of interest.

Conclusion

Current algorithms can accurately impute genotypes for
untyped markers, which enables researchers to pool data
between studies conducted using different SNP sets.
While genotyping itself results in a small error rate (e.g.
0.5%), imputing genotypes is surprisingly accurate. We
found that dense marker sets (e.g. Imn650Y) outperform
sparser ones (e.g. lImn317K) in terms of imputation yield
and accuracy. We also noticed it was harder to impute
genotypes for African American samples, partially due to
population admixture, although using a pooled reference
boosts performance. Interestingly, GWAS carried out
using imputed genotypes only slightly increased power on
top of assayed SNPs. The reason is likely due to adding
more markers via imputation only results in modest gain
in genetic coverage, but worsens the multiple testing pen-
alties. Furthermore, cis-eQTL mapping using dense SNP
set derived from imputation achieves great resolution,
and locate associate peak closer to causal variants than
conventional approach.

Methods

HapMap Reference Panel

The International HapMap data comprised 270 individu-
als from four ethnic groups: (i) 30 trios from the Yoruba,
in Ibadan, Nigeria (YRI); (ii) 30 trios from the CEPH col-
lection (Utah residents with ancestry from Northern and
Western Europe) (CEU); (iii) 45 unrelated Han Chinese
individuals from Beijing, China (CHB); and (iv) 45 unre-
lated individuals from Tokyo, Japan (JPT). We down-
loaded the phased CEU and YRI haplotypes of HapMap
release 22 as GWI reference panel.
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delLiver study subjects

Liver tissue samples were collected from "Liver Study sub-
jects", whose detailed characteristics were reported in a
separate article [15]. It was a joint effort of three inde-
pendent institutes, Vanderbilt University, the University
of Pittsburgh, and Merck Research Laboratories. All sam-
ples and patient data were handled in accordance with the
policies and procedures of the participating organiza-
tions. DNA specimens were extracted and sent to Illumina
Inc. for genotyping service using Imn650Y. Additionally,
we purified RNA from the tissue samples and measured
the approximately 40,000 gene transcription levels using
the Agilent platform. In total, 384 Caucasian subjects with
known gender were successfully mRNA profiled and SNP
genotyped. Furthermore, we filtered out SNPs with call
rate < 90%, and totally 574 K autosomal SNPs were used
in the analysis. [llumina 317 K array (Ilmn317K) contains
a subset of Ilmn650Y's SNPs, therefore, we also derived
IImn317K data (contain 300,854 SNPs after quality con-
trol) for deLiver samples.

In addition, DNA specimens were collected from eight
African American liver donors, and underwent Ilmn650Y
genotyping. Due to the small sample size, we did not run
GWI or WGAS on these eight subjects, but use them to
illustrate population admixture among African Ameri-
cans.

CATIE subjects

We selected 200 Caucasian American and 200 African
American from CATIE cohort, based on self reported eth-
nicity [14]. CATIE was a multiphase randomized control-
led trial of antipsychotic medications involving
schizophrenia patients. All cases were participants in the
CATIE project, which was conducted between January
2001 and December 2004. Individual genotyping was
conducted by Perlegen Sciences using Affymetrix 500 K
chipset and a custom 164 K chip created by Perlegen, and
made public available. Rigorous quality control steps
removed 157,048 SNPs, and the remaining 492,900 SNPs
entered the analysis [14].

Human Genetics Diversity Project (HGDP)

938 unrelated individuals from 51 populations (collected
in Europe, Middle East, Central/South Asia, Africa, East
Asia, America and Oceania) of the HGDP were success-
fully genotyped using Imn650Y [28], and data has been
made available to the public. Principal components (PCs)
built on over 600 K assayed SNPs provide high resolution
to separate subjects from different continents. We imple-
mented the eigenstrat algorithm [17], and derived identi-
cal results as Li et al [28]. Further, we projected the deLiver
subjects to PC space defined by HGDP data (termed as
HGDP-PC space) and examined population admixture in
our samples. The Caucasian Americans clustered tightly

http://www.biomedcentral.com/1471-2156/10/27

and collocated with HGDP Europeans. However, the eight
African Americans show certain degree of admixture, in
another word, deviation from the HGDP African popula-
tions towards the HGDP European cluster. Such results
suggest European genetic components in African Ameri-
can samples.

At the current stage, HGDP has not been typed on Affyme-
trix arrays, which only shares a small number of SNPs
with Ilmn650Y. Therefore, we are not able to build
HGDP-PC space on Affx500K SNPs and did not project
CATIE individuals.

Association Test

Kruskal-Wallis (KW) one-way analysis of variance was
employed in testing association between gene expression
traits and genotypes. The KW test can be considered as the
non-parametric counterpart to ANOVA for testing equal-
ity among groups (e.g., the three genotype groups corre-
sponding to a given SNP). This test does not assume the
traits are normally distribute and therefore is more robust
to outliers and violations of other assumptions important
for successful application of parametric tests. In brief, the
KW test was applied on a given trait-SNP pair by first rank-
ing all trait values regardless of genotype, assigning tied
values the average of the ranks they would have received
had they not been tied. Then we computed the test statis-
tic (K) as

2
38 ni(7i-T)

T 2 (-7)°

where n; is the number of subjects for genotype i; r;; is the
rank of subject j who carried genotype i; N is the entire
sample size; and g denotes the number of genotype
groups (either 2 or 3 for the groups tested). Finally, the p
value was derived using the approximation Pr(y?,, 2 K).

K=(N-1)
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Additional material

Additional file 1

Figure S1. Beagle and Mach showed similar accuracy in imputing miss-
ing genotypes. Although we did not apply quality score (QS) filtering,
Mach results were still slightly better. We noticed relatively low SNP den-
sity on chromosome 19, where imputation was consequently less accurate.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2156-10-27-S1.pdf]
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Additional file 2

Figure S2. Randomly masking out three thousand SNPs on the array had
a minor impact on imputation performance.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2156-10-27-S2.pdf]

Additional file 3

Figure S3. We used the Ilmn650Y data of the human genetics diversity
project (HGDP) samples to constructs principal components (HGDP-
PCs), and projected eight African American (termed as "deLiver AfrA" in
the figure) samples onto this HGDP-PCs space. Although located close to
the African groups, these eight subjects shifted towards the European clus-
ter, indicating population admixture.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2156-10-27-S3.pdf]

Additional file 4

Figure S4. Choosing the QS cutoff had little impact on the power of eQTL
mapping. In this paper, we used QS 0.3, according to the suggestions of
the software's authors.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2156-10-27-S4.pdf]

Additional file 5

Figure S5. We classified the cis eQTLs detected using the Ilmn650Y set
into two categories: (1) QTL whose best hit was closest to the transcription
start site (TSS) of the gene relative to the transcriptional end site (TES;
panel A); and (2) QTL whose best hit was closest to the TES relative to
the TSS (panel B). Clearly, the SNPs that strongly associated with mRNA
expression levels were clustered around the TSS and TES regions of the
genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2156-10-27-85.pdf]

Additional file 6

Figure S6. SNP minor allele frequency has only a small impact on impu-
tation accuracy.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2156-10-27-S6.pd]
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