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Magnetic work takes two forms in the thermodynamics of a paramagnet as developed in many
textbooks. We observe that in the case when the lattice energy is excluded, the formdW5BdM
cannot be used in a fundamental thermodynamic equation. This shows that there are thermodynamic
systems with no fundamental thermodynamic equation. ©1999 American Association of Physics Teachers.
t
n

g
a

th

n-

of
Ap

b

st
im
ic
no

ld

a
i
p

s
al

ex

-
s.
a
r
y

ea
m

own
of

:

er-

he

s
rthy
ned
of

y

at
ich

ip

dy-
The thermal physics of magnetic systems has been
source of continuing confusion. Mandl writes in the seco
edition of his text,1 ‘‘As is well known, the thermodynamic
discussion of magnetic systems easily leads to misleadin
even wrong statements, and I fear that the first edition w
not free from these.’’ And according to Kittel,2 ‘‘A great
deal of unnecessary confusion exists as to how to write
First Law of Thermodynamics for a magnetic system.’’

For a paramagnetic crystal in a uniform magnetic fieldB,
with total magnetic dipole momentM, there are two forms
for the work done whenB andM change:

dWms5BdM and dWs52MdB. ~1!

The formdWms applies when the mutual field energy is i
cluded in the system, the formdWs when it is not.3 The
forms dWms anddWs are readily derived also by means
statistical mechanics; we include these derivations in the
pendix.

The thermodynamic derivations of these forms given
Mandl,4 Kittel,5 and Callen6 make no explicit reference to
the crystal lattice. They assume that the volume of the cry
does not change when a change in the magnetic field is
posed; with this assumption, no work is done on the latt
alone. Consequently, the work forms are valid whether or
the lattice is included in the system. The formdWs

52MdB thus applies to the systemsPs ~whose internal
energy is just the potential energy of the spins in the fie!
andPsl ~which includes the lattice energy as well!. The form
dWms5BdM applies to the systemsPms andPmsl , which
add the mutual field energy to the first two systems.

Now Ps andPms, to which the lattice is external, are bon
fide thermodynamic systems, exchanging heat and work w
their environment, possessing an internal energy, entro
and temperature, and obeying the first and second law
thermodynamics. The systems are in no way ‘‘unphysic
or ‘‘unrealistic.’’ Indeed, the thermal physics ofPs has well-
known applications. For example, adiabatic cooling is
plained in some elementary texts by consideration just ofPs ,
with only passing reference to the lattice.7 And the statistical
mechanics ofPs takes a particularly simple form, so it ap
pears frequently in developments of elementary concept8

Notice that we do not assume that the spins are adiab
cally separated from the lattice, only that any heat transfe
the lattice is considered a transfer of energy out of the s
tem. Notwithstanding, the relaxation time between nucl
spins and the lattice is so slow that these spin systems
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be considered isolated from the lattice.9 The realization that
such spin systems are thermodynamic systems in their
right underlies the modern recognition of the existence
negative absolute temperatures.

Both dWms anddWs lead to correct forms of the first law

dU5dQ1BdM ~2!

applies to the systemsPms andPmsl , while

dU5dQ2MdB ~3!

applies toPs andPsl .
SincedQ5TdSfor reversible changes, we have,algebra-

ically,

dU5TdS1BdM ~4!

for Pms andPmsl , and

dU5TdS2MdB ~5!

for Ps andPsl .
It might appear that we have obtained fundamental th

modynamic equations~FTEs! for our four systems. Afunda-
mental thermodynamic equation~or relation! is an equation

dU5TdS1YdX, ~6!

expressing the total differential of the energy function of t
system in terms ofS and other independent variable~s! X.10

Equation~5! is a valid FTE forPs andPsl , the systems in
which the mutual field energy is excluded. And Eq.~4! is a
valid FTE forPmsl . But we shall show that Eq.~4! cannotbe
regarded as a FTE forPms. This system has peculiaritie
which seem not to have been noted before. They are wo
of attention for several reasons. Since the aforementio
authors do not even mention the lattice in their derivations
dWms, it is easy to fall into the belief that Eq.~4! is a valid
FTE for Pms, just as Eq.~5! is valid for Ps . No author
points out that Eq.~4! is a FTE only if the lattice energy is
included. The example ofPms shows that one cannot simpl
and automatically replacedQ with TdSin the expression of
the first law and obtain a FTE. We see below, in fact, th
Pms furnishes an example of a thermodynamic system wh
has no FTE.

A FTE @Eq. ~6!# is more than just an algebraic relationsh
among its constituent quantities.~A! Since it exhibits a total
differential, S andX are independent, and the coefficientsT
and Y are partial derivatives ofU. ~B! Physically,S and X
suffice to completely determine the state of the thermo
613© 1999 American Association of Physics Teachers



se

n

cle

e

e

ti
l

r

e

th

-

ec

x

d

no

n

id-

l

ich
-

er-

hat

em

l

-

g

namic system.11 Moreover, the energy functionU(S,X) con-
tains all thermodynamic information about the system.12

Much of the thermodynamic formalism is built on the
requirements. Yet Eq.~4! applied toPms fails them both, as
we now describe.

~A! requires thatSandM be independent variables. But i
Pms ~and in Ps!, S5Sms5Ss is a function ofM alone: S
5S(M ). For S is a function of the probability p
5p(spin up): S5NkB„2p ln p2(12p) ln (12p)…. p in turn
is a function of the quantityx5mB/kT: p5ex/(ex1e2x);
the denominator is the partition function for a one-parti
system. Finally,x is a function ofM by the equation of state
M5Nm tanhx. ~The explicit formula forS in terms ofM is
derived in the Appendix.!

@The entropySmsl is not a function ofM, so that Eq.~4! is
a valid fundamental thermodynamic equation forPmsl .
Proof: Smsl is the sum of the spin entropy, which by th
preceding paragraph is a function ofM, and the lattice en-
tropy, which is an increasing function ofT. If Smsl were a
function of M, i.e., Ss(M )1Sl(T)5 f (M ), a change inT
would necessarily changeM. But this is not the case: by th
equation of state,M is a function ofB/T, and so the change
in T can be followed by an isothermal change inB to restore
M to its original value.#

The spins in our paramagnetic crystal have total poten
energyUs52MB in the magnetic field, while the mutua
field energy isMB.13 Thus the energy of the systemPms is

Ums5Us1Um52MB1MB[0!

All partial derivatives ofUms are therefore identically 0 ove
the state space; but the coefficients in Eq.~4! are not.

As for ~B!, S and M do not by themselves determine th
thermodynamic state ofPms. SpecifyingSandM determines
p and therebyx. x determines the ratioB/T, but there are
infinitely many values ofB andT which yield this ratio; each
such pair of values corresponds to a different state of
system consistent with the givenS andM.

Since Eq.~4! fails ~A! and ~B!, it cannot be a FTE for
Pms. In fact, sinceUms[0 clearly does not contain all ther
modynamic information about this system,there is no FTE
for Pms.

If one doestake Eq.~4! ~or any equation! to be a FTE for
Pms, then the thermodynamic formalism produces incorr
results, two of which we now describe.

The temperature ofPms may be obtained by settingUms

50 in ~the algebraically correct! Eq. ~4! and solving forT:
T52M 8(Sms)B; or it may be obtained from the Appendi
since it is the same as the temperature ofPs . If Pms pos-
sessed a FTE@Eq. ~6!#, then the thermodynamic formalism
would define T5(]Ums/]Sms)X[0, which is not correct. In
Eq. ~4! for Pms, S5Sms andM are not independent@as dis-
cussed under~A!#, and so the partial (]Ums/]S)M does not
even exist, since one cannot varyS while keepingM fixed.

Maxwell’s relations express the equality of the secon
order mixed partials ofU. If Eq. ~4! were a FTE forPms,
then we could read off the Maxwell relation (]T/]M )S

5(]B/]S)M . As in the previous paragraph, this has
meaning forPms since one cannot hold one ofSandM fixed
while varying the other. Equation~5! gives (]T/]B)S
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52(]M/]S)B for Ps . Since all quantities in this expressio
have the same value forPs andPms, the expression is also
valid for Pms.

A note about consistency: in spite of the foregoing cons
erations, one might try to obtain

dHs5TdSs1BdM

from Eq. ~5! by taking the Legendre transformHs(Ss ,M )
5Us1MB, and useSs[Sms to conclude that the differentia
form on the right of Eq.~4! must be a total differential if the
form on the right of Eq.~5! is. But the Legendre transform
cannot be taken. Callen gives the condition under wh
Legendre transforms exist;14 translated into the present situ
ation, the condition becomes]2Us(Ss ,B)/]B2Þ0. Since
Us52MB andM5M (Ss), Us(Ss ,B)52M (Ss)B, and the
condition fails.

APPENDIX: STATISTICAL MECHANICS OF THE
SYSTEM Ps

Here we collect for reference the derivation of the prop
ties of theN-particle paramagnetic spin systemPs discussed
in the article. The canonical ensemble is understood in w
follows.

We label the two eigenstates of a single-particle syst
‘‘spin-up’’ and ‘‘spin-down,’’ with potential energies in the
uniform field «152mB and «251mB. Let x5mB/kBT.
Then the single-particle partition function isZ15ex1e2x

and the probabilities of the eigenstates arep5Pr(«1)
5ex/Z1 ; q5Pr(«2)512p5e2x/Z1 . As an immediate con-
sequence,

ln p2 ln q52x52mB/kBT. ~A1!

The ~mean! total magnetic moment isM5Nm(p2q)
5Nm(2p21)5NM1 , where M1 denotes the mean tota
magnetic moment per particle. Insertingp5ex/Z1 into this
expression gives theequation of statefor paramagnetic sys
tems:

M5Nm tanhx. ~A2!

In particular we see thatM is a function ofB/T. Rearranging
the first expression forM gives p51/21M /2mN and q
51/22M /2mN. If we substitute these values forp andq in
~A1!, we get

T5
mB

kB@ ln ~m2M /N!2 ln ~m1M /N!#
.

The entropy is defined asS5NS15NkB@2p ln p
2q ln q#, whereS1 is the entropy per particle. Substitutin
for p andq, Scan be written as a function ofM as asserted in
the article:

S5NkBF2S 1

2
1

M

2mND ln S 1

2
1

M

2mND2S 1

2
2

M

2mND
3 ln S 1

2
2

M

2mND G .
Next we computedS1 , using Eq.~A1!, anddM1 :
614M. Barrett and A. Macdonald
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dS152kBd@p ln p1q ln q#

52kB@dp~11 ln p!2dp~11 ln q!#

5kB@dp~ ln p2 ln q!#5
22mB

T
dp,

dM15d„m~2p21!…52mdp.

Therefore,

TdS5TNdS15TN
2B

T
dM152BdM. ~A3!

The mean energy per particle is the expected value of
eigenenergies,«1p1«2q52mB(p2q). The~mean! energy
of the whole system isUs5N„2mB(p2q)…52MB. The
differential of Us is

dUs52BdM2MdB5TdS2MdB, ~A4!

thus establishing a FTE forPs . Equations~1! and ~A3! to-
gether show that for reversible changes~i.e., dQ5TdS! in a
system with fixedN, the work isdWs52MdB.

For the systemPms, which includes the mutual field en
ergy, the internal energy is 0, but the temperature and
entropy are the same as inPs . For reversible changes, w
have by Eq.~A3!

05dUms5dQms1dWms5TdS1dWms52BdM1dWms,

and so the work isdWms5BdM.
As a final application of the statistical mechanics, we of

a short derivation of Eqs.~5! and~4! for the systemsPsl and
Pmsl , respectively. We writeUm5MB for the mutual field
energy,Us52MB for the spin potential energy, andUt for
the lattice energy; we writeSs instead ofS for the spin en-
tropy to keep it distinct fromSl , the lattice entropy. Taking
differentials,

dUm5d~MB!5BdM1MdB,

dUs5d~2MB!52BdM2MdB5TdSs2MdB, ~A5!

dUl5TdSl .

The second line uses Eq.~A3!. The third line contains no
work term because the volume is essentially constant.
may use the sameT in both the second and third lines b
cause the spins and the lattice are thermally coupled
assumed to be in equilibrium.

Adding the second and third lines of Eq.~A5! gives
615 Am. J. Phys., Vol. 67, No. 7, July 1999
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dUsl5d~Us1Ul !5Td~Ss1Sl !2MdB5TdSsl2MdB.
~A6!

Adding all three lines gives

dUmsl5d~Um1Us1Ul !

5Td~Ss1Sl !1BdM5TdSmsl1BdM. ~A7!
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ES IST NICHT EINMAL FALSCH

I just would like to add a couple of anecdotes. ... One is Pauli’s famous dictum on reading some
paper other than his whose identity has probably mercifully has been lost. He said, ‘‘Es ist nicht
einmal falsch!’’ @It’s not even wrong!#
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